Search results
1 – 10 of over 11000Anuj Aggarwal, Sparsh Agarwal, Vedant Jaiswal and Poonam Sethi
Introduction: Historically, the corporate governance (CG) framework was designed primarily to safeguard the economic interests of shareholders, as a result of political and legal…
Abstract
Introduction: Historically, the corporate governance (CG) framework was designed primarily to safeguard the economic interests of shareholders, as a result of political and legal interventions, developing into an effective instrument for stakeholders and society in general.
Purpose: The core objectives of the study include: identifying journals/publications responsible for publishing CG studies in India, key CG issues covered by CG researchers, the amount of high-impact CG literature across different time periods, sectors/industries covered by CG researchers and different research instruments (quantitative or qualitative) used in CG studies in India.
Design/methodology: The chapter used a sample of 130 corporate governance studies that fulfil the selection criteria, drawn from the repository of over 100 reputed journals that are either recognised by the Australian Business Deans Council (ABDC) or indexed by SCOPUS. A systematic literature review has been carried out pertaining to CG issues in India, based on various statistical tools, data, industries, research outlets & citations, etc.
Findings: The results show an overwhelming number of studies have assessed the relationship between CG variables and firm performance, which could be measured through a variety of performance metrics such as ROA and ROI. Apart from empirical analysis, many conceptual studies use repetitive basic statistical tools like descriptive statistics or regression analysis. The chapter offers insights into current achievements and future development.
Originality/value: This bibliometric study is a useful guide for policymakers, corporate leaders, research organisations and management faculty to draw insights from work produced by eminent researchers in GC in India.
Details
Keywords
Marjan Sharifi, Majid Siavashi and Milad Hosseini
Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex…
Abstract
Purpose
Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex porous media. In recent years, researchers have increasingly explored the use of porous media to improve the heat transfer processes. The lattice Boltzmann method (LBM) is one of the most effective techniques for simulating heat transfer in such media. However, the application of the LBM to study radiation in complex geometries that contain curved boundaries, as found in many porous media, has been limited.
Design/methodology/approach
The numerical evaluation of the effect of the radiation-conduction parameter and extinction coefficient on temperature and incident radiation distributions demonstrates that the proposed LBM algorithm provides highly accurate results across all cases, compared to those found in the literature or those obtained using the finite volume method (FVM) with the discrete ordinates method (DOM) for radiative information.
Findings
For the case with a conduction-radiation parameter equal to 0.01, the maximum relative error is 1.9% in predicting temperature along vertical central line. The accuracy improves with an increase in the conduction-radiation parameter. Furthermore, the comparison between computational performances of two approaches reveals that the LBM-LBM approach performs significantly faster than the FVM-DOM solver.
Originality/value
The difficulty of radiative modeling in combined problems involving irregular boundaries has led to alternative approaches that generally increase the computational expense to obtain necessary radiative details. To address the limitations of existing methods, this study presents a new approach involving a coupled lattice Boltzmann and first-order blocked-off technique to efficiently model conductive-radiative heat transfer in complex geometries with participating media. This algorithm has been developed using the parallel lattice Boltzmann solver.
Details
Keywords
MD. Shamshuddin, Anwar Saeed, S.R. Mishra, Ramesh Katta and Mohamed R. Eid
Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs…
Abstract
Purpose
Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs remains comparatively uncharted territory. This work presents a distinctive contribution through the comprehensive examination of heat and mass transfer phenomena in the NF ND–Cu/H2O under the influence of an exponentially stretching velocity. Moreover, the investigation delves into the intriguing interplay of gyrotactic microorganisms and convective boundary conditions within the system.
Design/methodology/approach
Similarity transformations have been used on PDEs to convert them into dimensionless ODEs. The solution is derived by using the homotopy analysis method (HAM). The pictorial notations have been prepared for sundry flow parameters. Furthermore, some engineering quantities are calculated in terms of the density of motile microbes, Nusselt and Sherwood numbers and skin friction, which are presented in tabular form.
Findings
The mixed convection effect associated with the combined effect of the buoyancy ratio, bioconvection Rayleigh constant and the resistivity due to the magnetization property gives rise to attenuating the velocity distribution significantly in the case of hybrid nanoliquid. The parameters involved in the profile of motile microorganisms attenuate the profile significantly.
Practical implications
The current simulations have uncovered fascinating discoveries about how metallic NFs behave near a stretched surface. These insights give us valuable information about the characteristics of the boundary layer close to the surface under exponential stretching.
Originality/value
The novelty of the current investigation is the analysis of NF ND–Cu/H2O along with an exponentially stretching velocity in a system with gyrotactic microorganisms. The investigation of fluid flow at an exponentially stretching velocity using NFs is still relatively unexplored.
Details
Keywords
Present investigation based on the flow of electrically conducting Williamson nanofluid embedded in a porous medium past a linearly horizontal stretching sheet. In addition to…
Abstract
Purpose
Present investigation based on the flow of electrically conducting Williamson nanofluid embedded in a porous medium past a linearly horizontal stretching sheet. In addition to that, the combined effect of thermophoresis, Brownian motion, thermal radiation and chemical reaction is considered in both energy and solutal transfer equation, respectively.
Design/methodology/approach
With suitable choice of nondimensional variables the governing equations for the velocity, temperature, species concentration fields, as well as rate shear stress at the plate, rate of heat and mass transfer are expressed in the nondimensional form. These transformed coupled nonlinear differential equations are solved semi-analytically using variation parameter method.
Findings
The behavior of characterizing parameters such as magnetic parameter, melting parameter, porous matrix, Brownian motion, thermophoretic parameter, radiation, Lewis number and chemical particular case present result validates with earlier established results and found to be in good agreement. Finally reaction parameter is demonstrated via graphs and numerical results are presented in tabular form.
Originality/value
The said work is an original work of the authors.
Details
Keywords
P.K. Pattnaik, S.R. Mishra, B. Mahanthesh, B.J. Gireesha and Mohammad Rahimi-Gorji
The study of novel exponential heat source phenomena across a flowing fluid with a suspension of microparticles and nanoparticles towards a convectively heated plate has been an…
Abstract
Purpose
The study of novel exponential heat source phenomena across a flowing fluid with a suspension of microparticles and nanoparticles towards a convectively heated plate has been an open question. Therefore, the impact of the exponential heat source in the transport of nano micropolar fluid in the existence of magnetic dipole, Joule heating, viscous heating and convective condition effects has been analytically investigated. Influence of chemical reaction has also been exhibited in this discussion.
Design/methodology/approach
The leading equations are constructed via conservation equations of transport, micro-rotation, energy and solute under the non-transient state situation. Suitable stretching transformations are used to transform the system of partial differential equations to ordinary. The transformed ODEs admit numerical solution via Runge–Kutta fourth order method along with shooting technique.
Findings
The effects of pertinent physical parameters characterizing the flow phenomena are presented through graphs and discussed. The inclusion of microparticles and nanoparticles greatly affects the flow phenomena. The impact of the exponential heat source (EHS) advances the heat transfer characteristics significantly compared to usual thermal-based heat source (THS). The thermal performance can be improved through the effects of a magnetic dipole, viscous heating, Joule heating and convective condition.
Originality/value
The effectiveness of EHS phenomena in the dynamics of nano micropolar fluid past an elongated plate which is convectively heated with regression analysis is for the first time investigated.
Details
Keywords
Antonio Fabio Di Rienzo, Pietro Asinari, Romano Borchiellini and Sunhash C. Mishra
The purpose of this paper is to present and validate some improvements to the lattice Boltzmann method (LBM) for solving radiative heat transfer in a participating medium…
Abstract
Purpose
The purpose of this paper is to present and validate some improvements to the lattice Boltzmann method (LBM) for solving radiative heat transfer in a participating medium. Validation of the model is performed by investigating the effects of spatial and angular discretizations and extinction coefficient on the solution. The error analysis and the order of convergence of the scheme are also reported.
Design/methodology/approach
LB scheme is derived from the radiative transfer equation, where isotropic scattering and radiative equilibrium condition are assumed. Azimuthal angle is discretized according to the lattice velocities on the computational plane, while, concerning the polar angle, an additional component of the discrete velocity normal to the plane is introduced. Radiative LB scheme is used to solve a 2‐D square enclosure benchmark problem. In order to validate the model, results of LB scheme are compared with a reference solution obtained through a Richardson extrapolation of the results of a standard finite volume method.
Findings
The proposed improvements drastically increase the accuracy of the previous method. Radiative LB scheme is found to be (at most) first order accurate. Numerical results show that solution gets more accurate when spatial and azimuthal angle discretizations are improved, but a saturation threshold exists. With regard to polar angle, minimum error occurs when a particular subdivision is considered.
Originality/value
The paper provides simple but effective improvements to the recently proposed lattice Boltzmann method for solving radiative heat transfer in a participating medium.
Details
Keywords
V.K. Gupta, S.B. Singh and S. Ray
A mathematical model has been developed to predict steady state creep response of a rotating disc made of SiC (particle/whisker) reinforced 6061Al matrix composite. The model is…
Abstract
A mathematical model has been developed to predict steady state creep response of a rotating disc made of SiC (particle/whisker) reinforced 6061Al matrix composite. The model is used to investigate the effect of SiC morphology on the creep behavior of composite disc. The steady state creep behavior has been described by Sherby’s creep law. The creep stresses and creep rates are significantly affected by the morphology of SiC. The steady state creep rates in whisker reinforced disc are observed to be significantly lower than those observed in particle reinforced disc.
Details
Keywords
Syed Modassir Hussain, Rohit Sharma, Manoj Kumar Mishra and Jitendra Kumar Singh
Nanosized honeycomb-configured materials are used in modern technology, thermal science and chemical engineering due to their high ultra thermic relevance. This study aims to…
Abstract
Purpose
Nanosized honeycomb-configured materials are used in modern technology, thermal science and chemical engineering due to their high ultra thermic relevance. This study aims to scrutinize the heat transmission features of magnetohydrodynamic (MHD) honeycomb-structured graphene nanofluid flow within two squeezed parallel plates under Joule dissipation and solar thermal radiation impacts.
Design/methodology/approach
Mass, energy and momentum preservation laws are assumed to find the mathematical model. A set of unified ordinary differential equations with nonlinear behavior is used to express the correlated partial differential equations of the established models, adopting a reasonable similarity adjustment. An approximate convergent numerical solution to these equations is evaluated by the shooting scheme with the Runge–Kutta–Fehlberg (RKF45) technique.
Findings
The impression of pertinent evolving parameters on the temperature, fluid velocity, entropy generation, skin friction coefficients and the heat transference rate is explored. Further, the significance of the irreversibility nature of heat transfer due to evolving flow parameters are evaluated. It is noted that the heat transference rate performance is improved due to the imposition of the allied magnetic field, Joule dissipation, heat absorption, squeezing and thermal buoyancy parameters. The entropy generation upsurges due to rising magnetic field strength while its intensification is declined by enhancing the porosity parameter.
Originality/value
The uniqueness of this research work is the numerical evaluation of MHD honeycomb-structured graphene nanofluid flow within two squeezed parallel plates under Joule dissipation and solar thermal radiation impacts. Furthermore, regression models are devised to forecast the correlation between the rate of thermal heat transmission and persistent flow parameters.
Details
Keywords
Taher Armaghani, A.M. Rashad, Omid Vahidifar, S.R. Mishra and A.J. Chamkha
This paper aims to concentrate on the impacts of a discrete heat source location on heat transfer and entropy generation for a Ag-water nanofluid in an open inclined L-shaped…
Abstract
Purpose
This paper aims to concentrate on the impacts of a discrete heat source location on heat transfer and entropy generation for a Ag-water nanofluid in an open inclined L-shaped cavity.
Design/methodology/approach
The governing partial differential equations for this study are computed by the finite volume method.
Findings
The results show that increasing the inclination angle leads to a rise in heat transfer. It is clear with the increase in the nanoparticles volume fraction that the thermal performance reduces, and it increases when the inclination angle increases.
Originality/value
Because of the continuous literature survey, the authors have not found a study that concentrates on the entropy generation in a wide variety of irregular ducts. Thus, in this paper, they present the analysis of entropy generation in an L-shaped duct experiencing a mixed convective flow with a nanofluid. The authors deal with this geometry because it is very useful in cooling systems of nuclear and chemical reactors and electronic components.
Details