Search results
1 – 10 of over 17000Umair Khan, Aurang Zaib, Ioan Pop, Iskandar Waini and Anuar Ishak
Nanofluid research has piqued the interest of scientists due to its intriguing applications in nanoscience, biomedical and electrical engineering, medication delivery…
Abstract
Purpose
Nanofluid research has piqued the interest of scientists due to its intriguing applications in nanoscience, biomedical and electrical engineering, medication delivery, biotechnology, food processing, chemotherapy and other fields. This paper aims to inspect the behavior of the mixed convection magnetohydrodynamic flow and heat transfer induced by a nonlinear stretching/shrinking sheet in a nanofluid with a convective boundary condition. Tiwari and Das mathematical nanofluid model is incorporated in the analysis.
Design/methodology/approach
The mathematical model is initially transformed to a nondimensional form by using dimensionless variables. Then the nondimensional partial differential equations are further transformed to a set of similarity equations by using the similarity technique. These equations are solved numerically by the bvp4c function in MATLAB software.
Findings
For a certain range of the stretching/shrinking parameter, two solutions are obtained. The friction factor and the heat transfer rate escalate due to suction parameter with adding nanoparticles volume fraction by almost 27.15% and 0.153% for the upper branch solution, while the friction factor declines by almost 30.10% but the heat transfer rate augments by 0.145% for the lower branch solution. Furthermore, the behavior of the nanoparticle volume fractions on the heat transfer rate behaves differently in the presence of the mixed convection effect. The temperature of fluid augments with increasing Biot number for both solutions.
Originality/value
The present work considers the flow and heat transfer induced by a stretching/shrinking sheet in a nanofluid using the Tiwari–Das nanofluid model with a convective boundary condition, where the effect of the buoyancy force is taken into consideration. It is shown that two solutions are found for a certain range of the shrinking strength, while the solution is unique for the stretching case. This study is important for scientists working in the growing field of nanofluids to become familiar with the flow properties and behaviors of such nanofluids.
Details
Keywords
Iskandar Waini, Anuar Ishak and Ioan Pop
This paper aims to examine the effect of Dufour and Soret diffusions on Al2O3-water nanofluid flow over a moving thin needle by using the Tiwari and Das model.
Abstract
Purpose
This paper aims to examine the effect of Dufour and Soret diffusions on Al2O3-water nanofluid flow over a moving thin needle by using the Tiwari and Das model.
Design/methodology/approach
The governing equations are reduced to the similarity equations using similarity transformations. The resulting equations are programmed in Matlab software through the bvp4c solver to obtain their solutions. The features of the skin friction, heat transfer and mass transfer coefficients, as well as the velocity, temperature and concentration profiles for different values of the physical parameters, are analysed and discussed.
Findings
The non-uniqueness of the solutions is observed for a certain range of the physical parameters. The authors also notice that the bifurcation of the solutions occurs in which the needle moves toward the origin (λ < 0). It is discovered that the first branch solutions of the skin friction coefficient and the heat transfer coefficients increase, but the mass transfer coefficient decreases in the presence of nanoparticle. Additionally, the simultaneous effect of Dufour and Soret diffusions tends to enhance the heat transfer coefficient; however, dual behaviours are observed for the mass transfer coefficient. Further analysis shows that between the two solutions, only one of them is stable and thus physically reliable in the long run.
Originality/value
The problem of Al2O3-water nanofluid flow over a moving thin needle with Dufour and Soret effects are the important originality of the present study. Besides, the temporal stability of the dual solutions is examined for time.
Details
Keywords
Ni Qiuping, Tang Yuanxiang, Said Broumi and Vakkas Uluçay
This research attempts to present a solid transportation problem (STP) mechanism in uncertain and indeterminate contexts, allowing decision makers to select their acceptance…
Abstract
Purpose
This research attempts to present a solid transportation problem (STP) mechanism in uncertain and indeterminate contexts, allowing decision makers to select their acceptance, indeterminacy and untruth levels.
Design/methodology/approach
Due to the lack of reliable information, changeable economic circumstances, uncontrolled factors and especially variable conditions of available resources to adapt to the real situations, the authors are faced with a kind of uncertainty and indeterminacy in constraints and the nature of the parameters of STP. Therefore, an approach based on neutrosophic logic is offered to make it more applicable to real-world circumstances. In this study, the triangular neutrosophic numbers (TNNs) have been utilized to represent demand, transportation capacity, accessibility and cost. Then, the neutrosophic STP was converted into an interval programming problem with the help of the variation degree concept. Then, two simple linear programming models were extracted to obtain the lower and upper bounds of the optimal solution.
Findings
The results reveal that the new model is not complicated but more flexible and more relevant to real-world issues. In addition, it is evident that the suggested algorithm is effective and allows decision makers to specify their acceptance, indeterminacy and falsehood thresholds.
Originality/value
Under the transportation literature, there are several solutions for TP and STP in crisp, fuzzy set (FS) and intuitionistic fuzzy set (IFS) conditions. However, the STP has never been explored in connection with neutrosophic sets to the best of the authors’ knowledge. So, this work tries to fill this gap by coming up with a new way to solve this model using NSs.
Details
Keywords
Behrouz Mozafari, Ali Akbar Abbasian Arani, Ghanbar Ali Sheikhzadeh and Mahmoud Salimi
The purpose of this paper is to study the effects of using different Brownian models on natural and mixed convection fluid flow and heat transfer inside the square enclosure…
Abstract
Purpose
The purpose of this paper is to study the effects of using different Brownian models on natural and mixed convection fluid flow and heat transfer inside the square enclosure filled with the AlOOH–water nanofluid.
Design/methodology/approach
Due to fulfill of this demand, five different models for the effective thermal conductivity and viscosity of the nanofluid are considered. The following results are presented for the Ra=107 to 1010 and Ri=0.01 to 100, whereas the volume fraction of the nanoparticles is varied from φ = 0.01 to 0.04.
Findings
According to the obtained results, increasing of Rayleigh number and reduction of Richardson number leads to the higher values of the average Nusselt number and entropy generation. Also, it is realized that, variation trend of the average Nusselt number and entropy generation in all cases is increasing by growing the volume fraction. It is found that the obtained average Nusselt numbers and entropy generations with Koo and Kleinstreuer are the highest among all the studied cases, and it is followed by Patel, Vajjha and Das, Corcione and Maxwell–Brinkman models, respectively.
Originality/value
Based on the results of present investigation, the Nusselt number difference predicted between the Maxwell–Brinkman model (as constant-property model) and Koo and Kleinstreuer model is about 7.84 per cent at 0.01 per cent volume fraction and 5.47 per cent at 0.04 per cent volume fraction for the Rayleigh number equal to 107. The entropy generation difference predicted between the two above studied model is about 8.05 per cent at 0.01 per cent volume fraction and 5.86 per cent at 0.04 per cent volume fraction for the Rayleigh number equal to 107. It is observed that using constant-property model has a significant difference in the obtained results with the results of other variable-property models.
Details
Keywords
N. Mahato, S.M. Banerjee, R.N. Jana and S. Das
The article focuses on the magnetohydrodynamic (MHD) convective flow of MoS2-SiO2 /ethylene glycol (EG) hybrid nanofluid. The effectiveness of Hall current, periodically heating…
Abstract
Purpose
The article focuses on the magnetohydrodynamic (MHD) convective flow of MoS2-SiO2 /ethylene glycol (EG) hybrid nanofluid. The effectiveness of Hall current, periodically heating wall and shape factor of nanoparticles on the magnetized flow of hybrid nanocomposite molybdenum disulfide- silicon dioxide (MoS2-SiO2) suspended in ethylene glycol (EG) in a vertical rotating channel under the influence of strong magnetic dipole (Hall effect) and thermal radiation is assessed. One of the channel walls has an oscillatory temperature gradient. Four different shapes (i.e. brick, cylinder, platelet and blade) of nanoparticles disseminated in base fluid (EG) are considered for simulation of the flow.
Design/methodology/approach
The analytical solution of governing equations has been presented. Influences of emerging physical parameters on the velocity and temperature profiles, the shear stresses and the rate of heat transfer are pointed out and discussed via graphs and tables.
Findings
The analysis revealed that Hall parameter has suppressing behavior on the velocity profiles within the rotating channel. The impact of nanoparticle shape factor advances the temperature characteristics significantly in the rotating channel. Brick-shape nanoparticles put up relatively low-temperature distribution in the rotating channel. The Hall parameter reduces the amplitudes of the shear stresses at the channel wall. However, the radiation parameter enhances the amplitude of the rate of heat transfer at the channel wall.
Social implications
The important technical advantage of hybrid composition of nanoparticles as a drug carrier is its stability, high thermal conductivity, high load carrying capacity, etc. The proposed model may be beneficial in biomedical engineering, automobile parts, mineral and cleaning oils manufacturing, rubber and plastic industries.
Originality/value
To the best of our knowledge, there is little or no report on the aspects of assessment of the effectiveness of Hall current and nanoparticle shape factor on an MHD flow and heat transfer of an electrically conducting MoS2-SiO2/EG ethylene glycol-based hybrid nanofluid confined in a vertical channel with periodically varying wall temperature subject to a rotating frame. The present work furnishes a robust benchmark for the dynamics of nanofluids.
Details
Keywords
Saeed Dinarvand and Mohammadreza Nademi Rostami
This research numerically investigates the steady laminar 3D forced convective flow and heat transfer of a rotating Al2O3/water nanofluid past a linearly stretching sheet with the…
Abstract
Purpose
This research numerically investigates the steady laminar 3D forced convective flow and heat transfer of a rotating Al2O3/water nanofluid past a linearly stretching sheet with the help of a novel two-phase analysis method by considering different nanoparticle shapes as well as velocity slip boundary condition plus internal heating.
Design/methodology/approach
The authors’ novel two-phase analysis method implements the Jang and Choi model for the effective thermal conductivity and incorporates it with Tiwari–Das mathematical model. Besides, the shape factors of the nanoparticles have also taken into account using the Timofeeva model for effective dynamic viscosity. The Prandtl number of the base fluid is kept constant at 6.2 and the temperature of the nanoparticles as well as the base fluid molecules is assumed to be 300 K. In short, after using the similarity transformation method, the obtained dimensionless nonlinear ODEs are numerically solved using the bvp4c built-in function from MATLAB. The governing parameters are solid volume concentration, rotation parameter, velocity slip parameter, heat generation or absorption parameter and Prandtl number of the base fluid.
Findings
It is argued that when the cylindrical shape for alumina is chosen, the maximum values for skin friction coefficients and local Nusselt number have been obtained among the other shapes. Further, the velocity slip enhancement in this problem will lead to a drastic reduction in the foregoing quantities of engineering interest.
Originality/value
To the best of the authors’ knowledge, this research is a novel attitude to two-phase nanofluid model.
Details
Keywords
S. Das, S. Chakraborty and R. N. Jana
This study aims to expose the flow phenomena and entropy generation during a; magnetohydrodynamic (MHD) Poiseuille flow of water-based nanofluids (NFs) in a porous channel subject…
Abstract
Purpose
This study aims to expose the flow phenomena and entropy generation during a; magnetohydrodynamic (MHD) Poiseuille flow of water-based nanofluids (NFs) in a porous channel subject to hydrodynamic slip and convective heating boundary conditions. The flow caused by the uniform pressure; gradient between infinite parallel plates is considered steady and fully developed. The nanoparticles; namely, copper, alumina and titanium oxide are taken with pure water as the base fluid. Viscous dissipation and Joule heating impacts are also incorporated in this investigation.
Design/methodology/approach
The reduced governing equations are solved analytically in closed form. The physical insights of noteworthy parameters on the important flow quantities are demonstrated through graphs and analyzed elaborately. The thermodynamic analysis is performed by calculating entropy generation; rate and Bejan number. A graphical comparison between solutions corresponding to NFs and regular fluid in the channel is also provided.
Findings
The analysis of the results divulges that entropy generation minimization can be achieved by an appropriate combination of the geometrical and physical parameters of thermomechanical systems. It is reported that ascent in magnetic parameter number declines the velocity profiles, while the inverse pattern is witnessed with augmentation in hydrodynamic slip parameters. The temperature dissemination declines with the growth of Biot numbers. It is perceived that the entropy generation rate lessens with an upgrade in magnetic parameter, whereas the reverse trend of Bejan number is perceived with expansion in magnetic parameter and Biot number. The important contribution of the result is that the entropy generation rate is controlled with an appropriate composition of thermo-physical parameter values. Moreover, in the presence of a magnetic field and suction/injection at the channel walls, the shear stresses at the channel walls are reduced about two times.
Practical implications
In various industrial applications, minimizing entropy generation plays a significant role. Miniaturization of entropy is the utilization of the energy of thermal devices such as micro heat exchangers, micromixers, micropumps and cooling microelectromechanical devices.
Originality/value
An attentive review of the literature discloses that quite a few studies have been conducted on entropy generation analysis of a fully developed MHD Poiseuille flow of NFs through a permeable channel subject to the velocity slip and convective heating conditions at the walls.
Details
Keywords
Xu Sun and Tianming Zhang
The purpose of this paper is to examine the impact of short sale prospect on future income smoothing.
Abstract
Purpose
The purpose of this paper is to examine the impact of short sale prospect on future income smoothing.
Design/methodology/approach
This study examines how short sale prospect impacts future income smoothing. This study follows prior research and uses two measures of income smoothing. One is the correlation between the change in prediscretionary income and the change in discretionary accruals. The other is the variability of earnings relative to the variability of cash flows.
Findings
This study finds that short sale prospect has a negative impact on future income smoothing. This finding is robust to use different measures of short sale prospect and income smoothing and to subsample tests. Additional analysis reveals that short sale prospect, by curbing income smoothing, reduces future stock price crash risk.
Originality/value
To the best of the authors’ knowledge, this study is the first to examine the impact of short selling on firms’ subsequent smoothing of reported income. This study contributes to the earnings quality literature by demonstrating the governance role of short selling on future earnings smoothness.
Details
Keywords
Pratibha Biswal and Tanmay Basak
This study aims to carry out the analysis of Rayleigh-Bénard convection within enclosures with curved isothermal walls, with the special implication on the heat flow visualization…
Abstract
Purpose
This study aims to carry out the analysis of Rayleigh-Bénard convection within enclosures with curved isothermal walls, with the special implication on the heat flow visualization via the heatline approach.
Design/methodology/approach
The Galerkin finite element method has been used to obtain the numerical solutions in terms of the streamlines (ψ ), heatlines (Π), isotherms (θ), local and average Nusselt number (
Findings
The presence of the larger fluid velocity within the curved cavities resulted in the larger heat transfer rates and thermal mixing compared to the square cavity. Case 3 (high concavity) exhibits the largest
Practical implications
The results may be useful for the material processing applications.
Originality/value
The study of Rayleigh-Bénard convection in cavities with the curved isothermal walls is not carried out till date. The heatline approach is used for the heat flow visualization during Rayleigh-Benard convection within the curved walled enclosures for the first time. Also, the existence of the enhanced fluid and heat circulation cells within the curved walled cavities during Rayleigh-Benard heating is illustrated for the first time.
Details