Search results
1 – 10 of 36T.S. Lee, Y.G. Liu and S.H. Winoto
Numerical studies are carried out to investigate the liquid‐lubricated herringbone‐grooved journal bearings (HGJBs) performance (such as the pressure and cavitation distribution…
Abstract
Numerical studies are carried out to investigate the liquid‐lubricated herringbone‐grooved journal bearings (HGJBs) performance (such as the pressure and cavitation distribution, load capacity and attitude angle, stability, etc.). Symmetrical and non‐symmetrical HGJBs are studied, respectively, and the herringbone grooves' influence on the stability of HGJBs is analyzed carefully. It was found that the maximum pressure and load capacity increase with the increase of eccentricity ratio while the attitude angle decreases with the increase of eccentricity ratio. The cavitation may occur in the fluid film of journal bearings while the eccentricity ratio increases to some critical value. The area of cavitated region increases with the increase of the eccentricity ratio. For non‐symmetrical HGJBs, the pressure and cavitation distribution is asymmetrical oo.
Details
Keywords
X.B. Chen, P. Yu, S.H. Winoto and H.T. Low
The paper aims to report on the flow past a porous trapezoidal‐cylinder, in which the porous‐fluid interface was treated by implementing the stress jump boundary conditions.
Abstract
Purpose
The paper aims to report on the flow past a porous trapezoidal‐cylinder, in which the porous‐fluid interface was treated by implementing the stress jump boundary conditions.
Design/methodology/approach
The numerical method was based on the finite‐volume method with body‐fitted and multi‐block grids. The Brinkman‐Forcheimmer extended model was used to govern the flow in the porous medium region. At its interface, a shear stress jump that includes the inertial effect was imposed, together with a continuity of normal stress.
Findings
The present model was validated by comparing with those for the flow around a solid circular cylinder. Results for flow around porous expanded trapezoidal cylinder are presented with flow configurations for different Darcy number, 10−2 to 10−7, porosity from 0.4 to 0.8, and Reynolds number 20 to 200. The flow develops from steady to unsteady periodic vortex shedding state. The first coefficient β has a more noticeable effect, whereas the second coefficient β1 has very small effect, even for Re = 200.
Originality/value
The effects of the porosity, Darcy number and Reynolds number on lift and drag coefficients, and the length of circulation zone or shedding period are studied.
Details
Keywords
Xiaobing Chen, Peng Yu, S.H. Winoto and Hong‐Tong Low
The purpose of this paper is to report on the flow past a porous square cylinder, implementing the stress jump treatments for the porous‐fluid interface.
Abstract
Purpose
The purpose of this paper is to report on the flow past a porous square cylinder, implementing the stress jump treatments for the porous‐fluid interface.
Design/methodology/approach
The numerical method was developed for flows involving an interface between a homogenous fluid and a porous medium. It is based on the finite volume method with body‐fitted and multi‐block grids. The Brinkman‐Forcheimmer extended model was used to govern the flow in the porous medium region. At its interface, a shear stress jump that includes the inertial effect was imposed, together with a continuity of normal stress.
Findings
The present model is validated by comparing with those for the flow around a solid circular cylinder. Results for flow around porous square cylinder are presented with flow configurations for different Darcy number, 10−2 to 10−5, porosity from 0.4 to 0.8, and Reynolds number 20 to 250. The flow develops from steady to unsteady periodic vortex shedding state. It was found that the stress jump interface condition can cause flow instability. The first coefficient β has a more noticeable effect whereas the second coefficient β1 has very small effect, even for Re=200. The effects of the porosity, Darcy number, and Reynolds number on lift and drag coefficients, and the length of circulation zone or shedding period are studied.
Originality/value
The present study implements the numerical method based on finite volume method with a collocated variable arrangement to treat the stress jump condition.
Details
Keywords
J.G. Zheng, T.S. Lee and S.H. Winoto
The aim of the study is to present a piecewise parabolic method (PPM) for numerical simulation of barotropic and nonbarotropic two‐fluid flows in more than one space dimension.
Abstract
Purpose
The aim of the study is to present a piecewise parabolic method (PPM) for numerical simulation of barotropic and nonbarotropic two‐fluid flows in more than one space dimension.
Design/methodology/approach
In transition layers of two components, a fluid mixture model system is introduced. Besides, conserving the mass, momentum and energy for the mixture, the model is supplemented with an advection equation for the volume fraction of one of the two fluid components to recover the pressure and track interfaces. The Tait and stiffened gas equations of state are used to describe thermodynamic properties of the barotropic and nonbarotropic components, respectively. To close the model system, a mixture equation of state is derived. The classical third‐order PPM is extended to the two‐fluid case and used to solve the model system.
Findings
The feasibility of this method has been demonstrated by good results of sample applications. Each of the material interfaces is resolved with two grid cells and there is no any pressure oscillation on the interfaces.
Research limitations/implications
With the mixture model system, there may be energy gain or loss for the nonbarotropic component on the material interfaces.
Practical implications
The method can be applied to a wide range of practical problems.
Originality/value
The method is simple. It not only has the advantage of Lagrangian‐type schemes but also keeps the robustness of Eulerian schemes.
Details
Keywords
Abstract
The time development of the symmetrical standing zones of recirculation, which is formed in the early stages of the impulsively started laminar flow over the square cylinder, have been studied numerically. The Reynolds number considered ranges from 25 to 1,000. Main flow characteristics of the developing recirculation region aft of the square cylinder and its interaction with the separating shear layer from the leading edges are studied through the developing streamlines. Other flow characteristics are analysed in terms of pressure contours, surface pressure coefficient, wake length and drag coefficient. Four main‐flow types and three subflow types of regimes are identified through a detailed analysis of the evolution of the flow characteristics. Typically, for a given Reynolds number, it is noted that flow starts with no separation (type I main‐flow). As time advances, symmetrical standing zone of recirculation develops aft of the square cylinder (type II main‐flow). The rate of growth in width, length and structure of the aft end eddies (sub‐flow (a)) depends on the Reynolds number. In time, separated flow from the leading edges of the square cylinder also develops (type III main‐flow) and forms growing separation bubbles (sub‐flow (b)) on the upper and lower surfaces of the square cylinder. As time advances, the separation bubbles on the upper and lower surfaces of the cylinder grow towards downstream regions and eventually merge with the swelling symmetrical eddies aft of the cylinder. This merging of the type II and type III flows created a complex type IV main‐flow regime with a disturbed tertiary flow zone (sub‐flow (c)) near the merging junction. Eventually, depending on the Reynolds number, the flow develops into a particular category of symmetrical standing recirculatory flow of specific characteristics.
Details
Keywords
R. Rashidi Meybodi, M. Zare Mehrjardi and A.D. Rahmatabadi
The purpose of this paper is to study tilt angle effects as design parameters of noncircular bearings, on the linear dynamic analyses of micropolar lubricated circular, two, three…
Abstract
Purpose
The purpose of this paper is to study tilt angle effects as design parameters of noncircular bearings, on the linear dynamic analyses of micropolar lubricated circular, two, three and four lobe journal bearings.
Design/methodology/approach
Reynolds equation in dynamic state is modified considering the micropolarity characteristics of lubricant, and it is solved using generalized differential quadrature method. The perturbed components of the dynamic pressure are extracted based on the linear dynamic model. To explain the transient state of the governing equation, through the linear dynamic approach, the whirling motion of rotor around the steady state position is assumed to be harmonic.
Findings
It is observed from the results that tilt angle has significant effects on the steady state and stability performance of lobed journal bearings. It may be selected suitably to improve the performance of rotor-bearing system, while all other lubricant properties and noncircular bearing design parameters are kept fixed. Results show that among the three types of bearings considered, the dynamic performance of two lobe bearings are more affected by the variation of tilt angle.
Originality/value
The present study is mainly concerned with the effects of tilt angle as a design parameter on the stability performance of a hydrodynamic noncircular journal bearing lubricated with micropolar fluid.
Details
Keywords
Vinicius Malatesta, Josuel Kruppa Rogenski and Leandro Franco de Souza
The centrifugal instability mechanism of boundary layers over concave surfaces is responsible for the development of quasi-periodic, counter-rotating vortices aligned in a…
Abstract
Purpose
The centrifugal instability mechanism of boundary layers over concave surfaces is responsible for the development of quasi-periodic, counter-rotating vortices aligned in a streamwise direction known as Görtler vortices. By distorting the boundary layer structure in both the spanwise and the wall-normal directions, Görtler vortices may modify heat transfer rates. The purpose of this study is to conduct spatial numerical simulation experiments based on a vorticity–velocity formulation of the incompressible Navier–Stokes system of equations to quantify the role of the transition in the heat transfer process.
Design/methodology/approach
Experiments are conducted using an in-house, parallel, message-passing code. Compact finite difference approximations and a spectral method are used to approximate spatial derivatives. A fourth-order Runge–Kutta method is adopted for time integration. The Poisson equation is solved using a geometric multigrid method.
Findings
Results show that the numerical method can capture the physics of transitional flows over concave geometries. They also show that the heat transfer rates in the late stages of the transition may be greater than those for either laminar or turbulent ones.
Originality/value
The numerical method can be considered as a robust alternative to investigate heat transfer properties in transitional boundary layer flows over concave surfaces.
Details
Keywords
Damodara Priyanka, Pratibha Biswal and Tanmay Basak
This study aims to elucidate the role of curved walls in the presence of identical mass of porous bed with identical heating at a wall for two heating objectives: enhancement of…
Abstract
Purpose
This study aims to elucidate the role of curved walls in the presence of identical mass of porous bed with identical heating at a wall for two heating objectives: enhancement of heat transfer to fluid saturated porous beds and reduction of entropy production for thermal and flow irreversibilities.
Design/methodology/approach
Two heating configurations have been proposed: Case 1: isothermal heating at bottom straight wall with cold side curved walls and Case 2: isothermal heating at left straight wall with cold horizontal curved walls. Galerkin finite element method is used to obtain the streamfunctions and heatfunctions associated with local entropy generation terms.
Findings
The flow and thermal maps show significant variation from Case 1 to Case 2 arrangements. Case 1 configuration may be the optimal strategy as it offers larger heat transfer rates at larger values of Darcy number, Dam. However, Case 2 may be the optimal strategy as it provides moderate heat transfer rates involving savings on entropy production at larger values of Dam. On the other hand, at lower values of Dam (Dam ≤ 10−3), Case 1 or 2 exhibits almost similar heat transfer rates, while Case 1 is preferred for savings of entropy production.
Originality/value
The concave wall is found to be effective to enhance heat transfer rates to promote convection, while convex wall exhibits reduction of entropy production rate. Comparison between Case 1 and Case 2 heating strategies enlightens efficient heating strategies involving concave or convex walls for various values of Dam.
Details
Keywords
Mohammad Sedigh Kohanpour and Gholamreza Imani
This study aims to investigate lattice Boltzmann (LB) simulation of the fluid flow and heat transfer characteristics of a heated porous elliptic cylinder in uniform flow based on…
Abstract
Purpose
This study aims to investigate lattice Boltzmann (LB) simulation of the fluid flow and heat transfer characteristics of a heated porous elliptic cylinder in uniform flow based on the two-domain scheme. In the present research, the effect of axis ratio (1 ≤ AR ≤ 2), Reynolds number (5 ≤ Re ≤ 40) and Darcy number (10−4 ≤ Da ≤ 10−2) are studied.
Design/methodology/approach
To perform the LB simulation based on the two-domain scheme, the nonequilibrium extrapolation method is modified to model the heat transfer interfacial conditions required at the curved interface.
Findings
The results show that the axis ratio as well as Reynolds and Darcy numbers significantly affect the fluid flow and heat transfer characteristics of the porous elliptic cylinder. It is shown that for AR > 1, the phenomenon of detached recirculating zone occurs at much higher Darcy numbers compared with the case of the porous circular cylinder (AR = 1). The results show that the location of maximum temperature within the cylinder moves downstream when the Reynolds number, Darcy number and axis ratio increase. It is also concluded that the average Nusselt number of a porous elliptic cylinder is always lower than that of a porous circular cylinder.
Originality/value
The LB simulation of forced convection from a porous cylinder in uniform flow with a curved interface based on the two-domain scheme has not been studied yet.
Details
Keywords
Gholamreza Imani and Mohsen Mozafari-Shamsi
The lattice Boltzmann simulation of fluid flow in partial porous geometries with curved porous-fluid interfaces has not been investigated yet. It is mainly because of the lack of…
Abstract
Purpose
The lattice Boltzmann simulation of fluid flow in partial porous geometries with curved porous-fluid interfaces has not been investigated yet. It is mainly because of the lack of a method in the lattice Boltzmann framework to model the hydrodynamic compatibility conditions at curved porous-fluid interfaces, which is required for the two-domain approach. Therefore, the purpose of this study is to develop such a method.
Design/methodology/approach
This research extends the non-equilibrium extrapolation lattice Boltzmann method for satisfying no-slip conditions at curved solid boundaries, to model hydrodynamic compatibility conditions at curved porous-fluid interfaces.
Findings
The proposed method is tested against the results available from conventional numerical methods via the problem of fluid flow through and around a porous circular cylinder in crossflow. As such, streamlines, geometrical characteristics of recirculating wakes and drag coefficient are validated for different Reynolds (5 ≤ Re ≤ 40) and Darcy (10−5 ≤ Da ≤ 5 × 10−1) numbers. It is also shown that without applying any compatibility conditions at the interface, the predicted flow structure is not satisfactory, even for a very fine mesh. This result highlights the importance of the two-domain approach for lattice Boltzmann simulation of the fluid flow in partial porous geometries with curved porous-fluid interfaces.
Originality/value
No research is found in the literature for applying the hydrodynamic compatibility conditions at curved porous-fluid interfaces in the lattice Boltzmann framework.
Details