S.A.M. Ghannadpour and H.R. Ovesy
The purpose of this paper is to develop and apply an exact finite strip (F‐a FSM) for the buckling and initial post‐buckling analyses of box section struts.
Abstract
Purpose
The purpose of this paper is to develop and apply an exact finite strip (F‐a FSM) for the buckling and initial post‐buckling analyses of box section struts.
Design/methodology/approach
The Von‐Karman's equilibrium equation is solved exactly to obtain the buckling loads and deflection modes for the struts. The investigation is then extended to an initial post‐buckling study with the assumption that the deflected form immediately after the buckling is the same as that obtained for the buckling. Through the solution of the Von‐Karman's compatibility equation, the in‐plane displacement functions are developed in terms of the unknown coefficient. These in‐plane and out‐of‐plane deflected functions are then substituted in the total strain energy expressions and the theorem of minimum total potential energy is applied to solve for the unknown coefficient.
Findings
The F‐a FSM is applied to analyze the buckling and initial post‐buckling behavior of some representative box sections for which the results were also obtained through the application of a semi‐energy finite strip method (S‐e FSM). For a given degree of accuracy in the results, however, the F‐a FSM analysis requires less computational effort.
Research limitations/implications
In the present F‐a FSM, only one of the calculated deflection modes is used for the initial post‐buckling study.
Practical implications
A very useful and computationally economical methodology is developed for the initial design of struts which encounter post‐buckling.
Originality/value
The originality of the paper is the fact that by incorporating a rigorous buckling solution into the Von‐Karman's compatibility equation, and solving it, a fairly efficient method for post‐buckling stiffness calculation is achieved.
Details
Keywords
Kamal Kishore Joshi and Vishesh Ranjan Kar
The purpose of this study is the comprehensive numerical assessment of multidirectional (1D/2D/3D) functionally graded composite panel structures with different material gradation…
Abstract
Purpose
The purpose of this study is the comprehensive numerical assessment of multidirectional (1D/2D/3D) functionally graded composite panel structures with different material gradation patterns and degrees of material heterogeneity. Here, deformation characteristics are obtained under different loading and support conditions.
Design/methodology/approach
The finite element solutions of multidirectional functionally graded composite panels subjected to uniform and sinusoidal transverse loads are presented under different support conditions. Here, different functionally graded composites, such as unidirectional (1D) and multidirectional (2D/3D), are considered by distributing constituent materials in one, two and three directions, respectively, using single and multivariable power-law functions. A constitutive model with fully spatial-dependent elastic stiffness is developed, whereas the kinematics of the present structure is defined using equivalent single-layer higher-order theory. The weak form, based on the principle of virtual work, is established and solved consequently using isoparametric finite element approximations via quadrilateral Lagrangian elements.
Findings
The appropriate mesh-refinement process is carried out to achieve the mesh convergence; whereas, the correctness of proposed heterogeneous model is confirmed through a verification test. The comprehensive numerical assessment of multidirectional functionally graded panels under various loading and support conditions depicts the importance of degree of material heterogeneity with different gradation patterns and volume-fraction exponents.
Originality/value
A comprehensive analysis on the deformation behaviour of 1D-functionally graded materials (FGMs) (X-FGM, Y-FGM and Z-FGM), 2D-FGMs (XY-FGM, YZ-FGM and XZ-FGM) and 3D-FGM composite panels FGM structures is presented. Multifaceted heterogeneous FGMs are modelled by varying constituent materials in one, two and three directions, using power-law functions. The constitutive model of multi-directional FGM is developed using fully spatial-dependent elastic matrix and higher-order kinematics. Isoparametric 2D finite element formulation is adopted using quadrilateral Lagrangian elements to model 1D/2D/3D-FGM structures and to obtain their deflection responses under different loading and support conditions.
Details
Keywords
Maria Anna De Rosa, Maria Lippiello and Stefania Tomasiello
The purpose of the present paper is to investigate the nonconservative instability of a single-walled carbon nanotube (SWCNT) with an added mass through nonlocal theories. The…
Abstract
Purpose
The purpose of the present paper is to investigate the nonconservative instability of a single-walled carbon nanotube (SWCNT) with an added mass through nonlocal theories. The governing equations are discretized by means of the differential quadrature (DQ) rules, as introduced by Bellman and Casti. DQ rules have been largely used in engineering and applied sciences. Recently, they were applied to enhance some numerical schemes, such as step-by-step integration schemes and Picard-like numerical schemes.
Design/methodology/approach
In the present paper, the DQ rules are used to investigate the nonconservative instability of a SWCNT through nonlocal theories.
Findings
To show the sensitivity of the SWCNT to the values of added mass and the influence of nonlocal parameter on the fundamental frequencies values, some numerical examples have been performed and discussed. Yet, the effect of the different boundary conditions on the instability behaviour has been investigated. The validity of the present model has been confirmed by comparing some results against the ones available in literature.
Originality/value
Applying the nonlocal elasticity theory, this paper presents a re-formulation of Hamilton’s principle for the free vibration analysis of a uniform Euler–Bernoulli nanobeam. The main purpose of this paper is to investigate the free vibration response of an SWCNT with attached mass and for various values of small scale effects.
Details
Keywords
Mokhtar Bouazza and Noureddine Benseddiq
The purpose of this paper is to investigate an analytical modeling for the thermoelastic buckling behavior of functionally graded (FG) rectangular plates (FGM) under thermal…
Abstract
Purpose
The purpose of this paper is to investigate an analytical modeling for the thermoelastic buckling behavior of functionally graded (FG) rectangular plates (FGM) under thermal loadings. The material properties of FGM are assumed to vary continuously through the thickness of the plate, according to the simple power-law distribution. Derivations of equations are based on novel refined theory using a new hyperbolic shear deformation theory. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theory presented is variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. In addition, numerical results for a variety of FG plates with simply supported edge are presented and compared with those available in the literature. Moreover, the effects of geometrical parameters of dimension the length to width aspect ratio (a/b), the plate width to thickness ratio (b/h), and material properties index (k) on the FGM buckling temperature difference are determined and discussed.
Design/methodology/approach
In the current paper, the application of the refined theory proposed by Shimpi is based on the assumption that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The most interesting feature of this theory is that it accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. It is extended to the analysis of buckling behavior of ceramic-metal FG plates subjected to the three types of thermal loadings, namely; uniform temperature rise, linear temperature change across the thickness, and nonlinear temperature change across the thickness. The material properties of the FG plates are assumed to vary continuously through the thickness of the plate, according to the simple power-law distribution. Numerical results for a variety of FG plates with simply supported edges are given and compared with the available results, wherever possible. Additionally, the effects of geometrical parameters and material properties on the buckling temperature difference of FGM plates are determined and discussed.
Findings
Unlike any other theory, the theory presented gives rise to only four governing equations. Number of unknown functions involved is only four, as against five in case of simple shear deformation theories of Mindlin and Reissner (first shear deformation theory). The plate properties are assumed to be varied through the thickness following a simple power-law distribution in terms of volume fraction of material constituents. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions.
Originality/value
To the best of the authors’ knowledge, there are no research works for thermal buckling analysis of FG rectangular plates based on new four-variable refined plate theory (RPT). The novelty of this paper is extended the use of the above-mentioned RPT with the addition of a new function proposed by Shimpi for thermal buckling analysis of plates made of FG materials. Unlike any other theory, the number of unknown functions involved is only four, as against five in the case of other shear deformation theories. The theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. The plates subjected to the two types of thermal loadings, namely; uniform temperature rise and nonlinear temperature change across the thickness. Numerical results for a variety of FG plates with simply supported edges are given and compared with the available results.
Details
Keywords
Mustafa S. Al-Khazraji, S.H. Bakhy and M.J. Jweeg
The purpose of this review paper is to provide a review of the most recent advances in the field of manufacturing composite sandwich panels along with their advantages and…
Abstract
Purpose
The purpose of this review paper is to provide a review of the most recent advances in the field of manufacturing composite sandwich panels along with their advantages and limitations. The other purpose of this paper is to familiarize the researchers with the available developments in manufacturing sandwich structures.
Design/methodology/approach
The most recent research articles in the field of manufacturing various composite sandwich structures were reviewed. The review process started by categorizing the available sandwich manufacturing techniques into nine main categories according to the method of production and the equipment used. The review is followed by outlining some automatic production concepts toward composite sandwich automated manufacturing. A brief summary of the sandwich manufacturing techniques is given at the end of this article, with recommendations for future work.
Findings
It has been found that several composite sandwich manufacturing techniques were proposed in the literature. The diversity of the manufacturing techniques arises from the variety of the materials as well as the configurations of the final product. Additive manufacturing techniques represent the most recent trend in composite sandwich manufacturing.
Originality/value
This work is valuable for all researchers in the field of composite sandwich structures to keep up with the most recent advancements in this field. Furthermore, this review paper can be considered as a guideline for researchers who are intended to perform further research on composite sandwich structures.
Details
Keywords
Giampiero Donnici, Marco Freddi and Alfredo Liverani
In this study, response surface methodology (RSM) is applied to a three-point bending stiffness analysis of low-cost material (PLA) specimens printed using FDM technology to…
Abstract
Purpose
In this study, response surface methodology (RSM) is applied to a three-point bending stiffness analysis of low-cost material (PLA) specimens printed using FDM technology to analyze the performance of different internal lattice structures (Octet and IsoTruss principally). The purpose of this study is to extend the definition from a discrete (lattice) model to an analytical one for its use in subsequent design phases, capable of optimizing the type of cell to be used and its defining parameters to find the best stiffness-to-weight ratio.
Design/methodology/approach
The representative function of their mechanical behavior is extrapolated through a two-variable polynomial model based on the cell size and the thickness of the beam elements characterizing it. The polynomial is obtained thanks to several tests performed according to the scheme of RSM. An analysis on the estimation errors due to discontinuities in the physical specimens is also conducted. Physical tests applied to the specimens showed some divergences from the virtual (ideal) behavior of the specimens.
Findings
The study allowed to validate the RSM models proposed to predict the behavior of the system as the size, thickness and type of cells vary. Changes in stiffness and weight of specimens follow linear and quadratic models, respectively. This generally allows to find optimal design points where the stiffness-to-weight ratio is at its highest.
Originality/value
Although the literature provides numerous references to studies characterizing and parameterizing lattice structures, the industrial/practical applications concerning lattice structures are often still detached from theoretical research and limited to achieving functioning models rather than optimal ones. The approach here described is also aimed at overcoming this limitation. The software used for the design is nTop. Subsequent three-point bending tests have validated the reliability of the model derived from the method’s application.
Details
Keywords
Sandeep Singh, Kamlesh Kulkarni, Ramesh Pandey and Harpreet Singh
The purpose of this paper is to present elastic buckling behaviour of simply supported and clamped thin rectangular isotropic plates having central circular cutouts subjected to…
Abstract
Purpose
The purpose of this paper is to present elastic buckling behaviour of simply supported and clamped thin rectangular isotropic plates having central circular cutouts subjected to uniaxial partial edge compression. Analysis is carried out for four different kinds of partial edge compression and it is extended to study the effect of aspect ratio of plate on buckling load.
Design/methodology/approach
A finite element method technique is used in the current work to solve the buckling problem of plate using eight node quadrilateral element and plate kinematics based on first order shear deformation theory. Results obtained from finite element analysis are first validated for isotropic square plates, without cutouts, subjected to uniaxial partial edge compression with some earlier published literature.
Findings
From the current work it is concluded that the buckling strength of square plates is highly influenced by partial edge compression, as compared to plate subjected to uniform edge compression; but with increase in aspect ratio, influence of partial edge compression on plate buckling load decreases.
Originality/value
This paper usefully shows how partial edge compression of plates affects the buckling strength of plate having circular cutouts. Generally, simply supported plates subjected uniaxial partial edge compression of Type I and Type III are found to be stronger than plates subjected to partial edge compression Type II and Type IV, respectively.
Details
Keywords
Elluri Venkata Prasad and Shishir Kumar Sahu
The purpose of this study is to study the buckling behavior of new aircraft material, i.e. glass fiber metal laminated (GFML) plates.
Abstract
Purpose
The purpose of this study is to study the buckling behavior of new aircraft material, i.e. glass fiber metal laminated (GFML) plates.
Design/methodology/approach
The first-order Reissner–Mindlin theory is used in the present finite element formulation to determine the buckling loads of GFML plates. A program is developed in MATLAB for analyzing the effect of different parameters on buckling loads GFML plates. A set of experiments was performed to determine critical buckling loads of GFML plates using universal testing machine INSTRON 8862 and compared with predictions using the numerical model.
Findings
The effects of various parameters such as aspect ratio, side to thickness ratio, ply orientation and boundary conditions on buckling loads of GFMLs are examined. With the increase of aspect ratio, the reduction in buckling load is observed, while the increase inside to thickness ratio decreases the buckling load of GFML plates. There is a slight variation in buckling load with the increase of ply orientation. The buckling load is significantly influenced by boundary conditions because of restraint at the edges.
Practical implications
These types of materials are used in lightweight structures such as aircraft, aerospace and military vehicles. The results reported in the present study can be used as design guidelines while designing fiber metal laminated (FML) plated structures.
Originality/value
For the first time, the authors have studied the buckling behavior of bidirectional woven FML plates using both numerical and experimental techniques.
Details
Keywords
Abdelrahman E.E. Eltoukhy, Felix T.S. Chan, S.H. Chung, Ben Niu and X.P. Wang
The purpose of this paper is twofold. First, to propose an operational model for aircraft maintenance routing problem (AMRP) rather than tactical models that are commonly used in…
Abstract
Purpose
The purpose of this paper is twofold. First, to propose an operational model for aircraft maintenance routing problem (AMRP) rather than tactical models that are commonly used in the literature. Second, to develop a fast and responsive solution method in order to cope with the frequent changes experienced in the airline industry.
Design/methodology/approach
Two important operational considerations were considered, simultaneously. First one is the maximum flying hours, and second one is the man-power availability. On the other hand, ant colony optimization (ACO), simulated annealing (SA), and genetic algorithm (GA) approaches were proposed to solve the model, and the upper bound was calculated to be the criteria to assess the performance of each meta-heuristic. After attempting to solve the model by these meta-heuristics, the authors noticed further improvement chances in terms of solution quality and computational time. Therefore, a new solution algorithm was proposed, and its performance was validated based on 12 real data from the EgyptAir carrier. Also, the model and experiments were extended to test the effect of the operational considerations on the profit.
Findings
The computational results showed that the proposed solution algorithm outperforms other meta-heuristics in finding a better solution in much less time, whereas the operational considerations improve the profitability of the existing model.
Research limitations/implications
The authors focused on some operational considerations rather than tactical considerations that are commonly used in the literature. One advantage of this is that it improves the profitability of the existing models. On the other hand, identifying future research opportunities should help academic researchers to develop new models and improve the performance of the existing models.
Practical implications
The experiment results showed that the proposed model and solution methods are scalable and can thus be adopted by the airline industry at large.
Originality/value
In the literature, AMRP models were cast with approximated assumption regarding the maintenance issue, while neglecting the man-power availability consideration. However, in this paper, the authors attempted to relax that maintenance assumption, and consider the man-power availability constraints. Since the result showed that these considerations improve the profitability by 5.63 percent in the largest case. The proposed operational considerations are hence significant. Also, the authors utilized ACO, SA, and GA to solve the model for the first time, and developed a new solution algorithm. The value and significance of the new algorithm appeared as follow. First, the solution quality was improved since the average improvement ratio over ACO, SA, and GA goes up to 8.30, 4.45, and 4.00 percent, respectively. Second, the computational time was significantly improved since it does not go beyond 3 seconds in all the 12 real cases, which is considered much lesser compared to ACO, SA, and GA.
Details
Keywords
Hiwa Esmaeilzadeh, Alireza Rashidi Komijan, Hamed Kazemipoor, Mohammad Fallah and Reza Tavakkoli-Moghaddam
The proposed model aims to consider the flying hours as a criterion to initiate maintenance operation. Based on this condition, aircraft must be checked before flying hours…
Abstract
Purpose
The proposed model aims to consider the flying hours as a criterion to initiate maintenance operation. Based on this condition, aircraft must be checked before flying hours threshold is met. After receiving maintenance service, the model ignores previous flying hours and the aircraft can keep on flying until the threshold value is reached again. Moreover, the model considers aircraft age and efficiency to assign them to flights.
Design/methodology/approach
The aircraft maintenance routing problem (AMRP), as one of the most important problems in the aviation industry, determines the optimal route for each aircraft along with meeting maintenance requirements. This paper presents a bi-objective mixed-integer programming model for AMRP in which several criteria such as aircraft efficiency and ferrying flights are considered.
Findings
As the solution approaches, epsilon-constraint method and a non-dominated sorting genetic algorithm (NSGA-II), including a new initializing algorithm, are used. To verify the efficiency of NSGA-II, 31 test problems in different scales are solved using NSGA-II and GAMS. The results show that the optimality gap in NSGA-II is less than 0.06%. Finally, the model was solved based on real data of American Eagle Airlines extracted from Kaggle datasets.
Originality/value
The authors confirm that it is an original paper, has not been published elsewhere and is not currently under consideration of any other journal.