Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 March 2002

A.K. Oudjida, S. Titri and M. Hamerlain

Matrix product is a compute bound problem that can be efficiently handled by elementary systolic algorithms. From a theoretical point of view, most of the algorithms are very…

550

Abstract

Matrix product is a compute bound problem that can be efficiently handled by elementary systolic algorithms. From a theoretical point of view, most of the algorithms are very simple and sometimes even trivial. However, the task of designing efficient implementation on a fixed‐connection network, such as on FPGA where resources are very limited, has been more demanding, and sometimes quite tedious. The objective of this paper is twofold: we first describe a full‐systolic algorithm for matrix product that has the merit over its existing counterparts, to require no preloading of input data into elementary processors (EPs) and generates output data only from boundary EPs. The resulting architecture can accept an uninterrupted stream of input data and produces an uninterrupted one with a latency of 2N‐1 for N×N matrix product. This architecture is also scalable and complies with the constraint of problem‐size independence (ψ). Secondly, we present a methodology for generating a family of very compact MP arrays on FPGA based essentially upon manual mapping at CLB level coupled with VHDL structural level.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 2 July 2020

Charanjeet Madan and Naresh Kumar

By means of the massive environmental and financial reimbursements, wind turbine (WT) has turned out to be a satisfactory substitute for the production of electricity by nuclear…

132

Abstract

Purpose

By means of the massive environmental and financial reimbursements, wind turbine (WT) has turned out to be a satisfactory substitute for the production of electricity by nuclear or fossil power plants. Numerous research studies are nowadays concerning the scheme to develop the performance of the WT into a doubly fed induction generator-low voltage ride-through (DFIG-LVRT) system, with utmost gain and flexibility. To overcome the nonlinear characteristics of WT, a photovoltaic (PV) array is included along with the WT to enhance the system’s performance.

Design/methodology/approach

This paper intends to simulate the control system (CS) for the DFIG-LVRT system with PV array operated by the MPPT algorithm and the WT that plays a major role in the simulation of controllers to rectify the error signals. This paper implements a novel method called self-adaptive whale with fuzzified error (SWFE) design to simulate the optimized CS. In addition, it distinguishes the SWFE-based LVRT system with standard LVRT system and the system with minimum and maximum constant gain.

Findings

Through the performance analysis, the value of gain with respect to the number of iterations, it was noted that at 20th iteration, the implemented method was 45.23% better than genetic algorithm (GA), 50% better than particle swarm optimization (PSO), 2.3% better than ant bee colony (ABC) and 28.5% better than gray wolf optimization (GWO) techniques. The investigational analysis has authenticated that the implemented SWFE-dependent CS was effectual for DFIG-LVRT, when distinguished with the aforementioned techniques.

Originality/value

This paper presents a technique for simulating the CS for DFIG-LVRT system using the SWFE algorithm. This is the first work that utilizes SWFE-based optimization for simulating the CS for the DFIG-LVRT system with PV array and WT.

Details

Data Technologies and Applications, vol. 54 no. 4
Type: Research Article
ISSN: 2514-9288

Keywords

Access Restricted. View access options
Article
Publication date: 14 January 2020

Thomas Thangam, Muthuvel K. and Hussein A. Kazem

Increased investment of a photovoltaic (PV) array makes it essential for the client to attain better results from the PV system. The nonlinearity of the PV array and the…

127

Abstract

Purpose

Increased investment of a photovoltaic (PV) array makes it essential for the client to attain better results from the PV system. The nonlinearity of the PV array and the revolution and rotation of the earth require the appliance of maximum power point tracking (MPPT) to the system. Accordingly, grid connected PV systems have turn out to be renowned, because they do not require battery back-ups to accomplish MPPT. Stand-alone systems could also attain MPPT; however, they require appropriate battery back-ups for this function.

Design/methodology/approach

This survey intends to formulate a review on the PV-based microgrid (MG) systems. Here, the literature analyses on diverse techniques associated with PV-based MG systems. It reviews 65 research papers and states the significant analysis. Initially, the analysis depicts various controllers that are contributed in different papers. Subsequently, the analysis also focuses on various features such as PV capacity and inverter topology, and it also analyses the renewable grid source that are exploited in each paper. Furthermore, this paper provides the detailed study regarding the chronological review and performance achievements in each contribution. Finally, it extends the various research issues which can be useful for the researchers to accomplish further research on PV-based MG systems.

Findings

This paper has presented a detailed review on PV-based MG systems that were enumerated in the above sections. Here, various controllers along with their better achievements were analyzed and described. From the review, it was known that several PV-based MG systems were really at the point for enabling better power output and conversion efficiency. In conclusion, this paper reviewed about 65 research papers and declared the significant analysis. Initially, the analysis also focused on various controller classifications in PV-based MG systems that were reviewed in this paper. Subsequently, the analysis also focused on various features, such as PV capacity and inverter topology. The analysis also reviewed the performance achievements and renewable gird source that were exploited in PV-based MG systems. At last, this paper has presented various research issues which can be useful for the researchers to accomplish further research on the features of PV-based MG systems.

Originality/value

This paper presents a brief analysis of PV-based MG systems. This is the first work that uses PV-based MG systems for better regulation of MPPT.

Details

World Journal of Engineering, vol. 17 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 1 September 2002

A.K. Oudjida, S. Titr and M. Hamarlain

The emergence of the systolic paradigm in 1978 inspired the first 2D‐array parallelization of the sequential matrix multiplication algorithm. Since then, and due to its attractive…

348

Abstract

The emergence of the systolic paradigm in 1978 inspired the first 2D‐array parallelization of the sequential matrix multiplication algorithm. Since then, and due to its attractive and appealing features, systolic approach has been gaining great momentum to the point where all 2D‐array parallelization attempts were exclusively systolic. As good result, latency has been successively reduced a number of times (5N, 3N, 2N, 3N/2), where N is the matrix size. But as latency was getting lower, further irregularities were introduced into the array, making the implementation severely compromised either at VLSI level or at system level. The best illustrative case of such irregularities are the two designs proposed by Tsay and Chang in 1995 and considered as the fastest designs (3N/2) that have been developed so far. The purpose of this paper is twofold: we first demonstrate that N+√N/2 is the minimal latency that can be achieved using the systolic approach. Afterwards, we introduce a full‐parallel 2D‐array algorithm with N latency and 2N I/O‐bandwidth. This novel algorithm is not only the fastest algorithm, but is also the most regular one too. A 3D parallel version with O(log N) latency is also presented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 4 of 4
Per page
102050