Search results

1 – 10 of 34
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 8 June 2012

K.P. Karunakaran, Alain Bernard, S. Suryakumar, Lucas Dembinski and Georges Taillandier

The purpose of this paper is to review additive and/or subtractive manufacturing methods for metallic objects and their gradual evolution from prototyping tools to rapid…

3840

Abstract

Purpose

The purpose of this paper is to review additive and/or subtractive manufacturing methods for metallic objects and their gradual evolution from prototyping tools to rapid manufacture of actual parts.

Design/methodology/approach

Various existing rapid manufacturing (RM) methods have been classified into six groups, namely, CNC machining laminated manufacturing, powder‐bed technologies, deposition technologies, hybrid technologies and rapid casting technologies and discussed in detail. The RM methods have been further classified, based on criteria such as material, raw material form, energy source, etc. The process capabilities springing from these classifications are captured in the form of a table, which acts as a database.

Findings

Due to the approximation in RM in exchange for total automation, a variety of multi‐faceted and hybrid approaches has to be adopted. This study helps in choosing the appropriate RM process among these myriad technologies.

Originality/value

This review facilitates identification of appropriate RM process for a given situation and sets the framework for design for RM.

Access Restricted. View access options
Article
Publication date: 20 April 2015

Suryakumar Simhambhatla and K.P. Karunakaran

– This paper aims to develop build strategies for rapid manufacturing of components of varying complexity with the help of illustration.

1075

Abstract

Purpose

This paper aims to develop build strategies for rapid manufacturing of components of varying complexity with the help of illustration.

Design/methodology/approach

The build strategies are developed using a hybrid layered manufacturing (HLM) setup. HLM, an automatic layered manufacturing process for metallic objects, combines the best features of two well-known and economical processes, viz., arc weld-deposition and milling. Depending on the geometric complexity of the object, the deposition and/or finish machining may involve fixed (3-axis) or variable axis (5-axis) kinematics.

Findings

Fixed axis (3-axis) kinematics is sufficient to produce components free of undercuts and overhanging features. Manufacture of components with undercuts can be categorized into three methods, viz., those that exploit the inherent overhanging ability, those that involve blinding of the undercuts in the material deposition stage and those that involve variable axis kinematics for aligning the overhang with the deposition direction.

Research limitations/implications

Although developed using the HLM setup, these generic concepts can be used in a variety of metal deposition processes.

Originality/value

This paper describes the methodology for realizing undercut features of varying complexity and also chalks out the procedure for their manufacture with the help of case studies for each approach.

Details

Rapid Prototyping Journal, vol. 21 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 22 August 2017

Somashekara M. Adinarayanappa and Suryakumar Simhambhatla

Twin-wire welding-based additive manufacturing (TWAM) is a unique process which uses gas metal arc welding (GMAW)-based twin-wire weld-deposition to create functionally gradient…

710

Abstract

Purpose

Twin-wire welding-based additive manufacturing (TWAM) is a unique process which uses gas metal arc welding (GMAW)-based twin-wire weld-deposition to create functionally gradient materials (FGMs). Presented study aims to focus on creating metallic objects with a hardness gradient using GMAW of twin-wire weld deposition setup.

Design/methodology/approach

By using dissimilar filler wires in twin-wire weld-deposition, it is possible to create metallic objects with varying hardness. This is made possible by individually controlling the proportion of each filler wire used. ER70S-6 and ER110S-G are the two filler wires used for the study; the former has lower hardness than the latter. In the current study, methodology and various experiments carried out to identify the suitable process parameters at a given location for a desired variation of hardness have been presented. A predictive model for obtaining the wire speed of the filler wires required for a desired value of hardness was also created. Subsequently, sample parts with gradient in various directions have been fabricated.

Findings

For dissimilar twin-wire weld-deposition used here, it is observed that the resultant hardness is in the volumetric proportion of the hardness of the individual filler wires. This aids the fabrication of FGMs using arc based weld-deposition with localized control of hardness, achieved through the control of the ratio of wire speeds of the individual filler wires. Four sample parts were fabricated to demonstrate the concept of realizing FGMs through TWAM. The fabricated parts showed good match with the desired hardness variation.

Research limitations/implications

This paper successfully presents the capability of TWAM for creating gradient metallic objects with varying hardness. Although developed using ER70S-6 and ER110S-G filler wire combination, the methodology can be extended for other filler wire combinations too for creating FGMs

Originality/value

GMAW-based twin-wire welding for additive manufacturing is a novel process which uses dissimilar filler wires for creating FGMs. This paper describes methodology of the same followed by illustration of parts created with bi-directional hardness gradient.

Details

Rapid Prototyping Journal, vol. 23 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 28 September 2018

Osama Abdulhameed, Abdurahman Mushabab Al-Ahmari, Wadea Ameen and Syed Hammad Mian

Hybrid manufacturing technologies combining individual processes can be recognized as one of the most cogent developments in recent times. As a result of integrating additive…

408

Abstract

Purpose

Hybrid manufacturing technologies combining individual processes can be recognized as one of the most cogent developments in recent times. As a result of integrating additive, subtractive and inspection processes within a single system, the relative benefits of each process can be exploited. This collaboration uses the strength of the individual processes, while decreasing the shortcomings and broadening the application areas. Notwithstanding its numerous advantages, the implementation of hybrid technology is typically affected by the limited process planning methods. The process planning methods proficient at effectively using manufacturing sources for hybridization are notably restrictive. Hence, this paper aims to propose a computer-aided process planning system for hybrid additive, subtractive and inspection processes. A dynamic process plan has been developed, wherein an online process control with intelligent and autonomous characteristics, as well as the feedback from the inspection, is utilized.

Design/methodology/approach

In this research, a computer-aided process planning system for hybrid additive, subtractive and inspection process has been proposed. A framework based on the integration of three phases has been designed and implemented. The first phase has been developed for the generation of alternative plans or different scenarios depending on machining parameters, the amount of material to be added and removed in additive and subtractive manufacturing, etc. The primary objective in this phase has been to conduct set-up planning, process selection, process sequencing, selection of machine parameters, etc. The second phase is aimed at the identification of the optimum scenario or plan.

Findings

To accomplish this goal, economic models for additive and subtractive manufacturing were used. The objective of the third phase was to generate a dynamic process plan depending on the inspection feedback. For this purpose, a multi-agent system has been used. The multi-agent system has been used to achieve intelligence and autonomy of different phases.

Practical implications

A case study has been developed to test and validate the proposed algorithm and establish the performance of the proposed system.

Originality/value

The major contribution of this work is the novel dynamic computer-aided process planning system for the hybrid process. This hybrid process is not limited by the shortcomings of the constituent processes in terms of tool accessibility and support volume. It has been established that the hybrid process together with an appropriate computer-aided process plan provides an effective solution to accurately fabricate a variety of complex parts.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 12 July 2021

Janmejay Dattatraya Kulkarni, Suresh Babu Goka, Pradeep Kumar Parchuri, Hajime Yamamoto, Kazuhiro Ito and Suryakumar Simhambhatla

The use of a gas metal arc welding-based weld-deposition, referred to as wire-direct energy deposition or wire-arc additive manufacturing, is one of the notable additive…

423

Abstract

Purpose

The use of a gas metal arc welding-based weld-deposition, referred to as wire-direct energy deposition or wire-arc additive manufacturing, is one of the notable additive manufacturing methods for producing metallic components at high deposition rates. In this method, the near-net shape is manufactured through layer-by-layer weld-deposition on a substrate. However, as a result of this sequential weld-deposition, different layers are subjected to different types of thermal cycles and partial re-melting. The resulting microstructural evolution of the material may not be uniform. Hence, the purpose of this study is to assess microstructure variation along with the lamination direction (or build direction).

Design/methodology/approach

The study was carried out for two different boundary conditions, namely, isolated condition and cooled condition. The microstructural evolution across the layers is hypothesized based on experimental assessment; this included microhardness, scanning electron microscopy imaging and electron backscatter diffraction analysis. These conditions subsequently collaborated with the help of thermal modeling of the process.

Findings

During a new layer deposition, the previous layer also is subject to re-melt. While the newly added layer undergoes rapid cooling through a combination of convection, conduction and radiation losses, the penultimate layer, sees a slower cooling curve due to its smaller exposure area. This behavior of rapid-solidification and subsequent re-melting and re-solidification is a progressing phenomenon across the layers and the bulk of the layers have uniform grains due to this remelt-re-solidification phenomenon.

Research limitations/implications

This paper studies the microstructure variation along with the build direction for thin-walled components fabricated through weld-deposition. This study would be helpful in addressing the issue of anisotropy resulting from the distinctive thermal history of each layer in the overall theme of metal additive manufacturing.

Originality/value

The unique aspect of this paper is the postulation of a generic hypothesis, based on experimental findings and supported by thermal modeling of the process, for remelt-re-solidification phenomenon followed by temperature raising/lowering repetitively in every layer deposition across the layers. This is implemented for different types of base plate conditions, revealing the role of boundary conditions on the microstructure evolution.

Access Restricted. View access options
Article
Publication date: 4 August 2022

Jayaprakash Sharma Panchagnula and Suryakumar Simhambhatla

Amongst various additive manufacturing (AM) techniques for realizing the complex metallic objects, weld-deposition (arc)-based directed energy AM technique is attaining more focus…

150

Abstract

Purpose

Amongst various additive manufacturing (AM) techniques for realizing the complex metallic objects, weld-deposition (arc)-based directed energy AM technique is attaining more focus over commercially available powder bed fusion techniques. This is because of the capability of high deposition rates, high power and material utilization, simpler setup and less initial investment of arc-based AM. Nevertheless, realization of sudden overhanging features through arc-based weld-deposition techniques is still a challenging task because of the necessity of support structures. This paper aims to describe a novel methodology for producing complex metallic objects with sudden overhangs without using supports.

Design/methodology/approach

The realization of complex metallic objects with sudden overhangs (without using supports) is possible by reorienting the workpiece and/or deposition head at every instance using higher order kinematics (5-axis setup) to make sure the overhanging feature is in line to the deposition direction.

Findings

In the absence of universally applicable support mechanism, deposition of overhanging features remains one of the main challenges in AM. A separate support structure is often necessary for depositing the overhanging features. Small overhang features are usually possible by a little overextension from the previous layer. Nevertheless, deposition of large gradually varying overhangs and sudden overhangs with complex features without support structures is a challenging task in any AM process. This demands higher order kinematics which calls for inclined and/or orthogonal slicing and area filling.

Originality/value

The unique aspect of this paper is the identification of sudden overhang feature from a tessellated computer-aided design (.stl) file and generates an orthogonal tool path for deposition for sudden overhangs. An in-house MATLAB routine has been developed and presented for performing the same. This methodology helps in realization of sudden overhangs without use of supports. To validate proposed technique, various illustrative case studies have been taken up for deposition.

Access Restricted. View access options
Article
Publication date: 5 September 2024

Chinmaya Prasad Padhy, Suryakumar Simhambhatla and Debraj Bhattacharjee

This study aims to improve the mechanical properties of an object produced by fused deposition modelling with high-grade polymer.

30

Abstract

Purpose

This study aims to improve the mechanical properties of an object produced by fused deposition modelling with high-grade polymer.

Design/methodology/approach

The study uses an ensembled surrogate-assisted evolutionary algorithm (SAEA) to optimize the process parameters for example, layer height, print speed, print direction and nozzle temperature for enhancing the mechanical properties of temperature-sensitive high-grade polymer poly-ether-ether-ketone (PEEK) in fused deposition modelling (FDM) 3D printing while considering print time as one of the important parameter. These models are integrated with an evolutionary algorithm to efficiently explore parameter space. The optimized parameters from the SAEA approach are compared with those obtained using the Gray Relational Analysis (GRA) Taguchi method serving as a benchmark. Later, the study also highlights the significant role of print direction in optimizing the mechanical properties of FDM 3D printed PEEK.

Findings

With the use of ensemble learning-based SAEA, one can successfully maximize the ultimate stress and percentage elongation with minimum print time. SAEA-based solution has 28.86% higher ultimate stress, 66.95% lower percentage of elongation and 7.14% lower print time in comparison to the benchmark result (GRA Taguchi method). Also, the results from the experimental investigation indicate that the print direction has a greater role in deciding the optimum value of mechanical properties for FDM 3D printed high-grade thermoplastic PEEK polymer.

Research limitations/implications

This study is valid for the parameter ranges, which are defined to conduct the experimentation.

Practical implications

This study has been conducted on the basis of taking only a few important process parameters as per the literatures and available scope of the study; however, there are many other parameters, e.g. wall thickness, road width, print orientation, fill pattern, roller speed, retraction, etc. which can be included to make a more comprehensive investigation and accuracy of the results for practical implementation.

Originality/value

This study deploys a novel meta-model-based optimization approach for enhancing the mechanical properties of high-grade thermoplastic polymers, which is rarely available in the published literature in the research domain.

Access Restricted. View access options
Article
Publication date: 12 January 2022

Xushan Zhao, Yuanxun Wang, Haiou Zhang, Runsheng Li, Xi Chen and Youheng Fu

This paper aims to summarize the influence law of hybrid deposited and micro-rolling (HDMR) technology on the bead morphology and overlapping coefficient. A better bead topology…

321

Abstract

Purpose

This paper aims to summarize the influence law of hybrid deposited and micro-rolling (HDMR) technology on the bead morphology and overlapping coefficient. A better bead topology positively supports the overlapping deposited in multi-beads between layers while actively assisting the subsequent layer's deposition in the wire and arc additive manufacturing (WAAM). Hybrid-deposited and micro-rolling (HDMR) additive manufacturing (AM) technology can smooth the weld bead for improved surface quality. However, the micro-rolling process will change the weld bead profile fitting curve to affect the overlapping coefficient.

Design/methodology/approach

Weld bead contours for WAAM and HDMR were extracted using line lasers. A comparison of bead profile curves was conducted to determine the influence law of micro-zone rolling on the welding bead contour and fitting curve. Aiming at the optimized overlapping coefficient of weld bead in HDMR AM, the optimal HDMR overlapping coefficient curve was proposed which varies with the reduction based on the best surface flatness. The mathematical model for overlapping in HDMR was checked by comparing the HDMR weld bead contours under different rolling reductions.

Findings

A fitting function of the bead forming by HDMR AM was proposed based on the law of conservation of mass. The change rule of the HDMR weld bead overlapping spacing with the degree of weld bead rolling reduction was generated using the flat-top transition calculation for this model. Considering the damming-up impact of the first bead, the overlapping coefficient was examined for its effect on layer surface flatness.

Originality/value

Using the predicted overlapping model, the optimal overlapping coefficients for different rolling reductions can be achieved without experiments. These conclusions can encourage the development of HDMR technology.

Details

Rapid Prototyping Journal, vol. 28 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 21 May 2024

Anand Mohan Pandey, Sajan Kapil and Manas Das

Selective jet electrodeposition (SJED) is an emerging additive manufacturing (AM) technology for realizing metallic components of nano and micro sizes. The deposited parts on the…

1242

Abstract

Purpose

Selective jet electrodeposition (SJED) is an emerging additive manufacturing (AM) technology for realizing metallic components of nano and micro sizes. The deposited parts on the substrate form metallurgical bonding, so separating them from the substrate is an unsolved issue. Therefore, this paper aims to propose a method for separating the deposited micro parts from a sacrificial substrate. Furthermore, single and multi-bead optimization is performed to fabricate microparts with varying density.

Design/methodology/approach

A typical SJED process consists of a nozzle (to establish a column of electrolytes) retrofitted on a machine tool (to provide relative motion between substrate and nozzle) that deposits material atom-by-atom on a conductive substrate.

Findings

A comprehensive study of process parameters affecting the layer height, layer width and morphology of the deposited micro-parts has been provided. The uniformity in the deposited parts can be achieved with the help of low applied voltage and high scanning speed. Multi-bead analysis for the flat surface condition is experimentally performed, and the flat surface condition is achieved when the centre distance between two adjacent beads is kept at half of the width of a single bead.

Originality/value

Although several literatures have demonstrated that the SJED process can be used for the fabrication of parts; however, part fabrication through multi-bead optimization is limited. Moreover, the removal of the fabricated part from the substrate is the novelty of the current work.

Access Restricted. View access options
Article
Publication date: 30 September 2019

Bohao Xu, Xiaodong Tan, Xizhi Gu, Donghong Ding, Yuelin Deng, Zhe Chen and Jing Xu

Once an uneven substrate is aligned, traditional control theories and methods can be used on it, so aligning is of great significance for the development of wire and arc additive…

398

Abstract

Purpose

Once an uneven substrate is aligned, traditional control theories and methods can be used on it, so aligning is of great significance for the development of wire and arc additive manufacturing (WAAM). This paper aims to propose a shape-driven control method for aligning a substrate with slopes to expand the application of WAAM.

Design/methodology/approach

A substrate with slopes must be aligned by depositing weld beads with slopes. First, considering the large height differences of slopes, multi-layer deposition is needed, and the number of layer of weld beads must be ascertained. Second, the change in the deposition rate is controlled as a ramp function to generate weld beads with slopes. Third, the variation of the deposition rate must be fine-tuned to compensate for the deviation between the actual and theoretical layer heights at the deposition of each layer. Finally, the parameters of the ramp functions at the deposition of each layer are determined through an optimization method.

Findings

First, to model the response function of layer height to deposition rate, the experiments are conducted with the deposition rate jumping from 4 to 8 mm/s and from 8 to 4 mm/s. When the deposition rate jumps from 4 to 8 mm/s and from 8 to 4 mm/s, the difference in the height of each layer decreases as the number of layer increases. Second, the variation of the deposition rate can be fine-tuned based on the deviation between the measured and theoretical layer heights because the variation of the deposition rate is proportional to the layer height when the initial and end deposition rates are near 4 or 8 mm/s, respectively. Third, the experimental results demonstrate that the proposed method is effective for single-layer aligning and aligning a substrate with one or more slopes.

Originality/value

The proposed method can expand the application of WAAM to an uneven substrate with slopes and lays the foundation for aligning tasks focused on uneven substrates with more complex shapes.

Details

Rapid Prototyping Journal, vol. 25 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 34
Per page
102050