S. Dadbakhsh, L. Hao and N. Sewell
Selective laser melting (SLM) is increasingly used for the manufacture of end‐use metal tools and parts, requiring the careful identification of a range of appropriate process…
Abstract
Purpose
Selective laser melting (SLM) is increasingly used for the manufacture of end‐use metal tools and parts, requiring the careful identification of a range of appropriate process parameters and conditions to achieve desirable properties and quality. Process conditions such as the relation between layout of parts and internal gas flow within the SLM platform can influence the consolidation of metal powers and therefore the quality and properties of the final parts. The purpose of this paper is to investigate the effect of part layout on quality and mechanical properties of cylindrical 316L stainless steel parts manufactured by SLM.
Design/methodology/approach
The cylindrical 316L stainless steel parts were manufactured in two directions, one perpendicular to the gas flow direction and one parallel to it. The investigation first focuses on visual inspection and porosity measurements to compare the quality factors such as delamination and porosity of the parts. A mechanical test procedure including tensile, compressive, and shear‐punch is used to assess the mechanical properties of the SLM specimens. Cross sectional analyses are carried out to better understand of material response under mechanical tests.
Findings
The results show that the part layout and gas flow condition have a negligible influence on porosity formation, however they notably affect the thermal stress and bonding strength between particles which consequently influences the mechanical properties of final parts. The manufacturing of parts perpendicular to gas flow seems to be more advantageous rather than parallel to gas flow.
Originality/value
This is the first work investigating the effects of the SLM layout on the quality and mechanical properties of stainless steel specimens. The results can be used in quality control purposes and for quality improvement of SLM parts.
Details
Keywords
Agnieszka Chmielewska, Bartlomiej Adam Wysocki, Elżbieta Gadalińska, Eric MacDonald, Bogusława Adamczyk-Cieślak, David Dean and Wojciech Świeszkowski
The purpose of this paper is to investigate the effect of remelting each layer on the homogeneity of nickel-titanium (NiTi) parts fabricated from elemental nickel and titanium…
Abstract
Purpose
The purpose of this paper is to investigate the effect of remelting each layer on the homogeneity of nickel-titanium (NiTi) parts fabricated from elemental nickel and titanium powders using laser powder bed fusion (LPBF). In addition, the influence of manufacturing parameters and different melting strategies, including multiple cycles of remelting, on printability and macro defects, such as pore and crack formation, have been investigated.
Design/methodology/approach
An LPBF process was used to manufacture NiTi alloy from elementally blended powders and was evaluated with the use of a remelting scanning strategy to improve the homogeneity of fabricated specimens. Furthermore, both single melt and up to two remeltings were used.
Findings
The results indicate that remelting can be beneficial for density improvement as well as chemical and phase composition homogenization. Backscattered electron mode in scanning electron microscope showed a reduction in the presence of unmixed Ni and Ti elemental powders in response to increasing the number of remelts. The microhardness values of NiTi parts for the different numbers of melts studied were similar and ranged from 487 to 495 HV. Nevertheless, it was observed that measurement error decreases as the number of remelts increases, suggesting an increase in chemical and phase composition homogeneity. However, X-ray diffraction analysis revealed the presence of multiple phases regardless of the number of melt runs.
Originality/value
For the first time, to the best of the authors’ knowledge, elementally blended NiTi powders were fabricated via LPBF using remelting scanning strategies.
Details
Keywords
İdris Tuğrul Gülenç, Mingwen Bai, Ria L. Mitchell, Iain Todd and Beverley J. Inkson
Current methods for the preparation of composite powder feedstock for selective laser melting (SLM) rely on costly nanoparticles or yield inconsistent powder morphology. This…
Abstract
Purpose
Current methods for the preparation of composite powder feedstock for selective laser melting (SLM) rely on costly nanoparticles or yield inconsistent powder morphology. This study aims to develop a cost-effective Ti6Al4V-carbon feedstock, which preserves the parent Ti6Al4V particle’s flowability, and produces in situ TiC-reinforced Ti6Al4V composites with superior traits.
Design/methodology/approach
Ti6Al4V particles were directly mixed with graphite flakes in a planetary ball mill. This composite powder feedstock was used to manufacture in situ TiC-Ti6Al4V composites using various energy densities. Relative porosity, microstructure and hardness of the composites were evaluated for different SLM processing parameters.
Findings
Homogeneously carbon-coated Ti6Al4V particles were produced by direct mixing. After SLM processing, in situ grown 100–500 nm size TiC nanoparticles were distributed within the α-martensite Ti6Al4V matrix. The formation of TiC particles refines the Ti6Al4V β grain size. Relative density varied between 96.4% and 99.5% depending on the processing parameters. Hatch distance, exposure time and point distance were all effective on relative porosity change, whereas only exposure time and point distance were effective on hardness change.
Originality/value
This work introduces a novel, cost-effective powder feedstock preparation method for SLM manufacture of Ti6Al4V-TiC composites. The in situ SLM composites achieved in this study have high relative density values, well-dispersed TiC nanoparticles and increased hardness. In addition, the feedstock preparation method can be readily adapted for various matrix and reinforcement materials in future studies.
Details
Keywords
Iván La Fé-Perdomo, Jorge Andres Ramos-Grez, Gerardo Beruvides and Rafael Alberto Mujica
The purpose of this paper is to outline some key aspects such as material systems used, phenomenological and statistical process modeling, techniques applied to monitor the…
Abstract
Purpose
The purpose of this paper is to outline some key aspects such as material systems used, phenomenological and statistical process modeling, techniques applied to monitor the process and optimization approaches reported. All these need to be taken into account for the ongoing development of the SLM technique, particularly in health care applications. The outcomes from this review allow not only to summarize the main features of the process but also to collect a considerable amount of investigation effort so far achieved by the researcher community.
Design/methodology/approach
This paper reviews four significant areas of the selective laser melting (SLM) process of metallic systems within the scope of medical devices as follows: established and novel materials used, process modeling, process tracking and quality evaluation, and finally, the attempts for optimizing some process features such as surface roughness, porosity and mechanical properties. All the consulted literature has been highly detailed and discussed to understand the current and existing research gaps.
Findings
With this review, there is a prevailing need for further investigation on copper alloys, particularly when conformal cooling, antibacterial and antiviral properties are sought after. Moreover, artificial intelligence techniques for modeling and optimizing the SLM process parameters are still at a poor application level in this field. Furthermore, plenty of research work needs to be done to improve the existent online monitoring techniques.
Research limitations/implications
This review is limited only to the materials, models, monitoring methods, and optimization approaches reported on the SLM process for metallic systems, particularly those found in the health care arena.
Practical implications
SLM is a widely used metal additive manufacturing process due to the possibility of elaborating complex and customized tridimensional parts or components. It is corroborated that SLM produces minimal amounts of waste and enables optimal designs that allow considerable environmental advantages and promotes sustainability.
Social implications
The key perspectives about the applications of novel materials in the field of medicine are proposed.
Originality/value
The investigations about SLM contain an increasing amount of knowledge, motivated by the growing interest of the scientific community in this relatively young manufacturing process. This study can be seen as a compilation of relevant researches and findings in the field of the metal printing process.
Details
Keywords
Jianran Lv, Hongyao Shen and Jianzhong Fu
The purpose of this paper is to supplement and upgrade existing research on LPBF of NiTi alloys. Laser powder bed fusion (LPBF) is a promising method for fabricating…
Abstract
Purpose
The purpose of this paper is to supplement and upgrade existing research on LPBF of NiTi alloys. Laser powder bed fusion (LPBF) is a promising method for fabricating nickel–titanium (Ni–Ti) alloys. It is well known that the energy density is mainly adjusted through the scanning speed and laser power. Nevertheless, there is lack in research on the effects of separately adjusting the scanning speed and laser power on the properties of the final Ni–Ti components. On the other hand, although Ni-rich Ni–Ti alloys [such as Ni54(at.%)Ti] have great potential in structural applications because of their high hardness and good shape stability, at present, there are few studies focusing on this grade of Ni–Ti alloy.
Design/methodology/approach
In this work, the energy density was adjusted by changing the laser power and scanning speed separately, and the corresponding process parameters were used to fabricate Ni54(at.%)Ti alloys. The formability (including the relative density, impurity content, etc.) and tensile properties of the LPBF Ni54(at.%)Ti alloys fabricated with different combinations of process parameters were analyzed.
Findings
The effects of increasing the laser power and reducing the scanning speed on the properties of the LPBF Ni54(at.%)Ti alloys and the property differences between components manufactured with different combinations of laser power and scanning speed under the same energy density were analyzed. The optimal process parameters were selected to fabricate the components that achieved the highest ultimate tensile strength of 537 MPa, a high relative density of 98.23%, a relatively low impurity content (0.073 Wt.% of carbon and 0.06 Wt.% of oxygen) and an ideal pseudoelasticity (95% recovery rate loaded at 300 MPa).
Originality/value
The effects of increasing the laser power and reducing the scanning speed on the properties of LPBF Ni54(at.%)Ti alloys were studied in this paper. This work is an upgrade and supplement to the existing research on fabricating Ni-rich Ni–Ti alloys by the LPBF method.
Details
Keywords
Flaviana Calignano, Alessandro Bove, Vincenza Mercurio and Giovanni Marchiandi
Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing…
Abstract
Purpose
Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism.
Design/methodology/approach
Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms.
Findings
Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism.
Originality/value
In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction.
Details
Keywords
Tanja Stiller, Eliza Truszkiewicz, Theresia Schrank, Bernd Erwin Haar, Gerald Meier, Wolfgang Kraschitzer, Gerald Pinter, Jürgen Lackner and Michael Berer
A key characteristic of powder bed fusion for polymers is that also the non-processed powder in the powder bed is exposed to elevated temperatures. This alters the properties of…
Abstract
Purpose
A key characteristic of powder bed fusion for polymers is that also the non-processed powder in the powder bed is exposed to elevated temperatures. This alters the properties of the remaining powder, which is compensated by refreshing the used powder with new powder. Nonetheless, it is discarded after a certain number of process iterations, which is economically and ecologically highly disadvantageous. Research works intensively to analyse and reduce the concurring effects responsible for powder ageing. This study aims to give a comprehensive overview of the cumulative changes in the powder and the printed parts when conducting several subsequent build cycles.
Design/methodology/approach
New polyamide powder (PA12) was used in a total of nine subsequent build cycles with constant sintering parameters and without powder refreshing. After each iteration, the powder and parts were tested for their morphological, thermal and rheological properties.
Findings
The results are related to three main changes in the powder during the build cycles: decreasing bulk density (through agglomeration), increasing melt viscosity (through polyamide post-condensation) and increasing melting peak and onset temperatures (through thermal annealing of the powder).
Originality/value
Even though the ageing of PA12 powder in powder bed fusion is well-known, it is not yet fully understood. Studies are not complete and due to different ageing conditions only partially comparable. The detailed study aims to help understand the related effects of powder ageing for process-relevant properties and to show which factors require control to limit the powder ageing.
Details
Keywords
Tobia Romano, Emanuele Migliori, Marco Mariani, Nora Lecis and Maurizio Vedani
Binder jetting is a promising route to produce complex copper components for electronic/thermal applications. This paper aims to lay a framework for determining the effects of…
Abstract
Purpose
Binder jetting is a promising route to produce complex copper components for electronic/thermal applications. This paper aims to lay a framework for determining the effects of sintering parameters on the final microstructure of copper parts fabricated through binder jetting.
Design/methodology/approach
The knowledge gained from well-established powder metallurgy processes was leveraged to study the densification behaviour of a fine high-purity copper powder (D50 of 3.4 µm) processed via binder jetting, by performing dilatometry and microstructural characterization. The effects of sintering parameters on densification of samples obtained with a commercial water-based binder were also explored.
Findings
Sintering started at lower temperature in cold-pressed (∼680 °C) than in binder jetted parts (∼900 °C), because the strain energy introduced by powder compression reduces the sintering activation energy. Vacuum sintering promoted pore closure, resulting in greater and more uniform densification than sintering in argon, as argon pressure stabilizes the residual porosity. About 6.9% residual porosity was obtained with air sintering in the presence of graphite, promoting solid-state diffusion by copper oxide reduction.
Originality/value
This paper reports the first systematic characterization of the thermal events occurring during solid-state sintering of high-purity copper under different atmospheres. The results can be used to optimize the sintering parameters for the manufacturing of complex copper components through binder jetting.
Details
Keywords
Jieren Guan, Shuhu Luo, Xinfeng Kan, Chao Chen and Qiuping Wang
The purpose of this study is to assess the effects of fused filament fabrication (FFF) printing parameters on the surface quality and dimensional accuracy of FFF-fabricated copper…
Abstract
Purpose
The purpose of this study is to assess the effects of fused filament fabrication (FFF) printing parameters on the surface quality and dimensional accuracy of FFF-fabricated copper green parts using the appropriate filaments. The orthogonal experiments were implemented and the errors in length, width and height were measured and analyzed. The results of range analysis and variance analysis indicated the orders of effect factors. Dissolvent debinding combined with thermal debinding was adopted to remove the binders inside the green part by calculating debinding rate. The influence mechanism of sintering temperatures on the microstructure and shrinkage was elaborated.
Design/methodology/approach
The extrusion-based FFF in manufacturing copper parts can overcome shortcomings for high reflectivity and heat dissipation in laser powder bed fusion process at cost-saving and materials saving. This study makes an attempt to prepare copper/binder composite filaments through mixing, extrusion and flowability evaluation.
Findings
The results showed that the suitable composite filaments applied for FFF should balance rigidity and plasticity. The combination of printing speed and heating temperature impacts on the surface quality significantly, and the major factor in determining the dimensional accuracy is layer thickness. Two-stage debinding procedure was beneficial for binder removal and sintering process. The higher sintering temperature results in less voids, sizes shrinkage and densified microstructure, which is attributed to the occurrence of sintering neck among the fused copper powders.
Originality/value
The self-prepared copper/binder composite filaments were successfully manufactured using the FFF process. This study provides unique approach and print guidance for fabricating complex structures of pure copper components.
Details
Keywords
Valentina Vendittoli, Wilma Polini, Michael S.J. Walter and Jakob P.C. Stacheder
This study aims to address challenges in the Laser Powder Bed Fusion process of polymers, focusing on the considerable amount of unsintered powder left post-printing. The…
Abstract
Purpose
This study aims to address challenges in the Laser Powder Bed Fusion process of polymers, focusing on the considerable amount of unsintered powder left post-printing. The objective is to understand the altered properties of this powder and find solutions to improve the process, reduce waste and explore reusing reprocessed powder.
Design/methodology/approach
A novel methodology is used to generate reprocessed powder without traditional printing, reducing time, cost and waste. The approach mimics the ageing effects during the printing process, providing insights into particle size distribution and thermal behaviour.
Findings
Results reveal insights into artificial ageing, showing an 8.2% decrease in particle size (60.256–69.183 µm) and a 9.1% increase in particle size (17.378–19.953 µm) compared to unsintered powder. Thermal behaviour closely mirrors used powders, with variations in enthalpy of fusion (−0.55% to 2.69%) and degree of crystallinity (0.19% to 2.64%). The proposed methodology produces results that differ from those due to printing under 3% from a thermal point of view. The new process reduces the time needed for aged powder, contributing to cost savings and waste reduction.
Originality/value
The study introduces a novel method for reprocessed powder generation, deviating from traditional printing. The originality lies in artificially ageing powders, providing comparable results to actual printing. This approach offers efficiency, time savings and waste reduction in the Laser Powder Bed Fusion process, presenting a valuable avenue for further research.