Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 3 August 2010

M. Brochu, D.W. Heard, J. Milligan and S. Cadney

The purpose of this paper is to outline the feasibility of using the electrospark welding (ESW) process to free‐form metallic components with nanostructured or amorphous…

541

Abstract

Purpose

The purpose of this paper is to outline the feasibility of using the electrospark welding (ESW) process to free‐form metallic components with nanostructured or amorphous microstructures.

Design/methodology/approach

ESW was used to deposit amorphous and nanostructure coatings for high‐wear resistance applications. The ESW process was also used to freeform three‐dimensional objects via multiple deposition passes. The near‐net shape capability is interesting as it significantly reduces the post‐processing operations.

Findings

This paper demonstrates that it is possible and economically feasible to produce components possessing metastable structures, i.e. nano or amorphous, using the ESW process.

Practical implications

The ESW process possesses the ability to manufacture advanced materials and can pattern surfaces to provide appropriate functionality with respect to the service environment.

Originality/value

This paper represents a summary of the capabilities of ESW to fabricate advanced materials and is based on the achievements of our laboratory. In particular, results on ESW of amorphous materials and the ability to produce coatings with second phase particles refined to this extent have not been achieved using other manufacturing methods.

Details

Assembly Automation, vol. 30 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Access Restricted. View access options
Article
Publication date: 17 January 2020

X.R. Wang, Z.Q. Wang, T.S. Lin, P. He, R.J. Wang and M.Y. Bao

Electrospark deposition (ESD) attracts special attention from scientists and engineers because of its unique advantages. However, the ESD process has been carried out by hand up…

465

Abstract

Purpose

Electrospark deposition (ESD) attracts special attention from scientists and engineers because of its unique advantages. However, the ESD process has been carried out by hand up to the present. This prevents ESD from preparing complex curve/surface coatings owing to manual operation characteristics. To meet the coating precise preparation requirements for a lot of parts with complex surface from various industrial fields, this paper aims to obtain a new automatic ESD equipment, process and preparation methodology for complex surface coatings.

Design/methodology/approach

By designing a special deposition holder and re-programming programmable machine controller, an ESD power supply and a computer numerical control milling machine are integrated to obtain an electrospark-computer integrated deposition system (ES-CIDS). Then, based on the ES-CIDS, a new ESD process, named electrospark-computer numerical control deposition (ES-CNCD) is developed. Furthermore, complex surface coatings are depicted using non-uniform rational B-spline mathematical model and modeled in a special software developed via MATLAB. Finally, deposition programs for a complex coating are generated using golden section interpolation method, and transferred to and executed by the ES-CIDS to accomplish the preparation of the complex surface coating.

Findings

This paper demonstrates that it is possible and feasible to prepare complex surface coatings via an automatic ESD process (namely, ES-CNCD) precisely.

Research limitations/implications

This paper can make automatic ESD process get more attention from scientific researchers and engineers, and promote the research of the ES-CNCD process/equipment.

Practical implications

The ES-CNCD process can be used in the manufacturing of complex surface coatings, and in the remanufacturing of complex shape parts.

Social implications

The ES-CIDS/ES-CNCD can promote the development of related equipment and technology, and bring opportunities and employment to ESD industry.

Originality/value

This work prepares complex surface coatings precisely for the first time using a new automatic ESD process (ES-CNCD), which has wide application prospects in various industries.

1 – 2 of 2
Per page
102050