Search results

1 – 10 of 38
Article
Publication date: 1 August 2023

Rafaela Aparecida Mendonça Marques, Aline Cristina Maciel, Antonio Fernando Branco Costa and Kleber Roberto da Silva Santos

This study investigates the repetitive mixed sampling (MRS) plan based on the Cpk index that was proposed by Aslam et al. (2013a). They were the first to study the MRS plan, but…

Abstract

Purpose

This study investigates the repetitive mixed sampling (MRS) plan based on the Cpk index that was proposed by Aslam et al. (2013a). They were the first to study the MRS plan, but they did not pay attention to the fact that submitting to the variable inspection a sample that was first submitted to the attribute inspection, truncates the X observations. In addition, they did not work with an accurate expression to calculate the probabilities of the Cpk statistic.

Design/methodology/approach

The authors presented the results based on their original sampling plan through Monte Carlo simulation and defined the theoretical results of their plan when the sample submitted to the variable inspection is no longer the same one submitted to the attribute inspection.

Findings

The β risks of the optimum sampling plans presented by Aslam et al. (2013a) are pretty high, exceeding 46%, on average – this same problem was also observed in Saminathan and Mahalingam (2018), Balamurali (2020) and Balamurali et al. (2020), where the β risks of their proposed sampling plans are yet higher.

Originality/value

In terms of originality, the authors can declare the following. It is not a big deal to propose new sampling plans, if one does not know how to obtain their properties. The miscalculations of the sampling plans risks are dangerous; imagine the situation where the acceptance of bad lots exceeds 50% just because the sampling plan was incorrectly designed. Yes, it is a big deal to warn that this type of problem is arising in a growing number of papers. The authors of this study are the pioneers to discover that many studies focusing on the sampling plans need to be urgently revised.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 5 February 2018

Balamurali Saminathan and Usha Mahalingam

The purpose of this paper is to propose a new mixed repetitive group sampling (RGS) plan based on the process capability index, Cpk, where the quality characteristics of interest…

Abstract

Purpose

The purpose of this paper is to propose a new mixed repetitive group sampling (RGS) plan based on the process capability index, Cpk, where the quality characteristics of interest follow the normal distribution with unknown mean and unknown variance. Tables are constructed to determine the optimal parameters for practical applications for both symmetric and asymmetric fraction non-conforming cases. The advantages of this proposed mixed sampling plan are also discussed. The proposed sampling plan is also compared with other existing sampling plans.

Design/methodology/approach

In order to determine the optimal parameters of the proposed mixed RGS plan based on Cpk, the authors constructed tables for various combinations of acceptable and limiting quality levels (LQLs). For constructing tables, the authors followed the approach of two points on the operating characteristic (OC) curve. The optimal problem is formulated as a non-linear programming where the objective function to be minimized is the average sample number (ASN) and the constraints are related to lot acceptance probabilities at acceptable quality level and LQL under the OC curve.

Findings

The proposed mixed RGS plan will be a new addition to the literature of acceptance sampling. It is shown that the proposed mixed plan involves minimum ASN with desired protection to both producers and consumers compared to other existing sampling plans. The practical application of the proposed mixed sampling plan is also explained with an illustrative real-time example.

Originality/value

In this paper, the authors propose a new mixed RGS plan based on the process capability index Cpk, where the quality characteristic of interest follows the normal distribution with unknown mean and unknown variance. Tables are constructed to determine the optimal parameters for practical applications. The proposed mixed sampling plan can be used in all production industries. This kind of mixed RGS plan is not available in the literature.

Details

International Journal of Quality & Reliability Management, vol. 35 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 28 November 2023

M. Sankara Narayanan, P. Jeyadurga and S. Balamurali

The purpose of this paper is to design a modified version of the double sampling plan to handle the inspection processes requiring a minimum sample size to assure the median life…

Abstract

Purpose

The purpose of this paper is to design a modified version of the double sampling plan to handle the inspection processes requiring a minimum sample size to assure the median life for the products under the new Weibull–Pareto distribution. The economic design of the proposed plan is also considered to assure the product's lifetime with minimum cost.

Design/methodology/approach

The authors have developed an optimization model for obtaining the required plan parameters by solving simultaneously two non-linear inequalities and such inequalities have been formed based on the two points on the operating characteristic curve approach.

Findings

The results show that the average sample number, average total inspection and total inspection cost under the proposed plan are smaller than the same of a single sampling plan. This means that the proposed plan will be more efficient than a single sampling plan in reducing inspection effort and cost while providing the desired protection.

Originality/value

The proposed modified double sampling plan designed to assure the median life of the products under the new Weibull–Pareto distribution is not available in the literature. The proposed plan will be very useful in assuring the product median lifetime with minimum sample size as well as minimum cost in all the manufacturing industries.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 October 2018

Jeyadurga P., Usha Mahalingam and Saminathan Balamurali

The purpose of this paper is to design a modified chain sampling plan for assuring the product percentile life where the lifetime follows Weibull or generalized exponential…

Abstract

Purpose

The purpose of this paper is to design a modified chain sampling plan for assuring the product percentile life where the lifetime follows Weibull or generalized exponential distributions (GEDs). In order to reduce the cost of inspection when implementing the proposed modified chain sampling plan, it is also considered the economic aspect of designing of proposed plan in this paper.

Design/methodology/approach

The authors have designed the proposed plan on the basis of two points on the operating characteristic (OC) curve approach. The optimization problem is used to determine the plan parameters of the proposed plan so that the specified values of producer’s risk and consumer’s risk are satisfied simultaneously.

Findings

The results we have obtained, confirm that the proposed plan will be very effective in reducing the sample size rather than other existing sampling plans. The OC curves of proposed plan, chain sampling plan and zero acceptance number single sampling plan show that the performance of proposed plan in discriminating the good and poor quality lots is better than other two plans. In this paper, it is proved that the value of number of preceding lots required for current lot disposition plays an important role.

Originality/value

The proposed modified chain sampling plan for assuring the percentile lifetime of the products under Weibull or GEDs is not available in the literature. The proposed plan can be used in all the manufacturing industries to assure the product percentile lifetime with minimum sample size as well as minimum cost.

Details

International Journal of Quality & Reliability Management, vol. 35 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 December 2002

S. Balamurali and M. Kalyanasundaram

The capability indices are widely used by quality professionals as an estimate of process capability. Many process indices have been proposed and developed with Cp, Cpk and Cpm

1222

Abstract

The capability indices are widely used by quality professionals as an estimate of process capability. Many process indices have been proposed and developed with Cp, Cpk and Cpm among the most widely used. More recently, techniques have been developed to construct lower 95 percent confidence limits for each index. These techniques are based on the assumption that the underlying process is normally distributed. The non‐parametric but computer intensive method called Bootstrap is utilized and the Bootstrap confidence limits are calculated for these indices. A simulation using three distributions (normal, log‐normal and chi‐squared) was conducted and a comparison was made of the performances of the Bootstrap and the parametric estimates.

Details

International Journal of Quality & Reliability Management, vol. 19 no. 8/9
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 14 June 2019

Shruti Shastri

The purpose of this study is to revisit the twin deficit hypothesis (TDH) and provide insights into the transmission mechanism connecting budget deficits and current account…

Abstract

Purpose

The purpose of this study is to revisit the twin deficit hypothesis (TDH) and provide insights into the transmission mechanism connecting budget deficits and current account deficits for five major South Asian countries, namely, India, Bangladesh, Pakistan Sri Lanka and Nepal for the period 1985-2016.

Design/methodology/approach

This study uses a multivariate framework including real interest rate, real exchange rate and real gross domestic product to avoid the possibility of incorrect inferences caused by omission of relevant mediating variables. The long-run relationship and causality are investigated through the autoregressive distributed lag bounds testing approach and Toda Yamamoto approach, respectively, for each individual country. The robustness of the results is assessed with the help of Westerlund’s cointegration test and group mean fully modified ordinary least squares (GM-FMOLS), group mean dynamic ordinary least square (GM-DOLS) and common correlated effect mean group (CCEMG) estimators in the panel framework.

Findings

Both time series and panel evidences indicate long-run relationship between budget balance (BB) and current account balance (CAB) together with the mediating variables. The results indicate bi-directional causation between the two balances for India and Bangladesh, TDH for Pakistan and Sri Lanka and the reverse causation from CAB to BB for Nepal. Regarding the transmission mechanism, the results indicate the absence of the causal chain postulated by Mundell–Fleming, which predicts that BB causes CAB via interest rate and exchange rate. A CCEMG estimate of the import demand function reveals a positive government spending elasticity of imports suggesting that BB affects CAB by direct impact through demand.

Originality/value

This study augments the twin deficit literature on South Asian countries by providing insights into the transmission mechanism connecting the BB and CAB. Moreover, the study provides robust evidences on the TDH by using both time series and panel data techniques.

Details

Indian Growth and Development Review, vol. 12 no. 3
Type: Research Article
ISSN: 1753-8254

Keywords

Article
Publication date: 8 February 2019

Pedro Carlos Oprime, Fabiane Leticia Lizarelli, Marcio Lopes Pimenta and Jorge Alberto Achcar

The traditional Shewhart control chart, the X-bar and R/S chart, cannot give support to decide when it is not economically feasible to stop the process in order to remove special…

Abstract

Purpose

The traditional Shewhart control chart, the X-bar and R/S chart, cannot give support to decide when it is not economically feasible to stop the process in order to remove special causes. Therefore, the purpose of this paper is to propose a new control chart design – a modified acceptance control chart, which provides a supportive method for decision making in economic terms, especially when the process has high capability indices.

Design/methodology/approach

The authors made a modeling expectation average run length (ARL), which incorporates the probability density function of the sampling distribution of Cpk, to compare and analyze the efficiency of the proposed design.

Findings

This study suggested a new procedure to calculate the control limits (CL) of the X-bar chart, which allows economic decisions about the process to be made. By introducing a permissible average variation and defining three regions for statistical CL in the traditional X-bar control chart, a new design is proposed.

Originality/value

A framework is presented to help practitioners in the use of the proposed control chart. Two new parameters (Cp and Cpk) in addition to m and n were introduced in the expected ARL equation. The Cpk is a random variable and its probability function is known. Therefore, by using a preliminary sample of a process under control, the authors can test whether the process is capable or not.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 3 August 2010

Belmiro P.M. Duarte and Pedro M. Saraiva

This paper seeks to present an optimization‐based approach to design acceptance sampling plans by variables for controlling non‐conforming proportions in lots of items. Simple and…

Abstract

Purpose

This paper seeks to present an optimization‐based approach to design acceptance sampling plans by variables for controlling non‐conforming proportions in lots of items. Simple and double sampling plans with s known and unknown are addressed. Normal approximation distributions proposed by Wallis are employed to handle plans with s unknown. The approach stands on the minimization of the average sampling number (ASN) taking into account the constraints arising from the two point conditions on the operating characteristic (OC) curve. The resulting optimization problems fall under the class of mixed integer non‐linear programming (MINLP), and are solved employing GAMS. The results obtained strongly agree with classical acceptance sampling plans found in the literature, although outperforming them in some cases, and providing a general approach to address other cases.

Design/methodology/approach

The approach takes the form of formulation of the design of acceptance sampling plans by variables for non‐conforming proportions as optimization problems minimizing the ASN with the constraints being the acceptance probability at the controlled points of the OC curve, and subsequent solution of the mathematical programming problems arising with mathematical programming algorithms.

Findings

The results are in strong agreement with acceptance sampling plans available in the literature. The approach presented here outperforms the classical plans in some cases and its generality allows one to design other plans without the requirement of additional relations between the parameters and intensive enumerative algorithms.

Originality/value

The paper presents an optimization‐based approach to design robust acceptance sampling plans by variables for non‐conforming proportions that allows a general treatment and disregards the need for computational intensive enumerative‐based procedures.

Details

International Journal of Quality & Reliability Management, vol. 27 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 5 August 2019

Amer Al-Omari, Amjad Al-Nasser and Enrico Ciavolino

Lifetime data are used in many different applied sciences, like biomedicine, engineering, insurance and finance and others. The purpose of this paper is to develop a new…

Abstract

Purpose

Lifetime data are used in many different applied sciences, like biomedicine, engineering, insurance and finance and others. The purpose of this paper is to develop a new acceptance sampling plans for Rama distribution when the mean lifetime test is truncated at a pre-determined time. The minimum sample sizes required to assert the specified life mean is obtained for a given customer’s risk. The operating characteristic function values of the sampling plans and producer’s risk are calculated.

Design/methodology/approach

The results are illustrated using numerical examples and a real data set is considered to illustrate the performance of the suggested acceptance sampling plans and how it can be used for the industry applications.

Findings

This paper shows a new acceptance sampling plans based on Rama distribution in the particular case when the mean life time test is truncated.

Originality/value

The results calculated in this paper demonstrate the differences between OC values for different distributions taken into account. In particular, OC values of Rama distribution are found to be less than the proposed distribution counterparts.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 24 August 2021

Oluwayomi Kayode Babatunde

Studies on total quality management (TQM) implementation among construction enterprises in Nigeria have used few TQM constructs and variables and yielded fragmented results. This…

Abstract

Purpose

Studies on total quality management (TQM) implementation among construction enterprises in Nigeria have used few TQM constructs and variables and yielded fragmented results. This study adopts comprehensive TQM constructs and variables for comparison with the previous studies to establish the critical variables for effective TQM practices in Nigeria.

Design/methodology/approach

Data collection from a stratified sample of Nigerian construction practitioners with practical or theoretical knowledge of TQM, using web-based questionnaires consisting of twelve validated TQM implementation constructs and 65 variables. 72 home and overseas practicing professionals participated (21% response rate) using nonprobability sampling techniques. Following acceptable Cronbach's alpha reliability values equal to 0.7, the author/s rank-ordered the twelve TQM constructs and 65 TQM variables. Then, they computed the z-scores and the percentiles to identify the TQM critical variables – 75th percentiles and above, contrasted with the threshold normalized values equal to 0.5. Furthermore, Pareto analysis determined the 20% “vital many” responsible for 80% of the problem.

Findings

Customer focus, top management commitment and supplier quality management were the top-25% constructs, while employee involvement, statistical process control and design quality management were the bottom-25% constructs. Thirteen TQM critical variables emerged from the top-25% constructs.

Practical implications

Top management to involve employees to be customer-focused and driven toward suppliers' quality management system. Priority should be given to implementing the critical variables advanced in this study.

Originality/value

This study juxtaposes the results of similar studies for consistency to advance the critical success factors.

Details

The TQM Journal, vol. 34 no. 5
Type: Research Article
ISSN: 1754-2731

Keywords

1 – 10 of 38