Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 16 September 2013

N. Radhika, R. Subramaniam and S. Babudeva senapathi

The objective of this research is focused on the design of a new hybrid composite as well as to analyse the optimum turning conditions to minimise the surface roughness and work…

337

Abstract

Purpose

The objective of this research is focused on the design of a new hybrid composite as well as to analyse the optimum turning conditions to minimise the surface roughness and work piece surface temperature, thereby increasing the productivity.

Design/methodology/approach

Mechanical properties such as hardness and tensile strength of Al-Si10Mg alloy reinforced with 3, 6 and 9 wt.% of alumina along with 3 wt.% of graphite prepared by stir casting method have been evaluated. The present study addresses the machinability parameter optimisation of Al alloy-9 per cent alumina-3 per centgraphite. Experiments were conducted based on the Taguchi parameter design by varying the feed (0.1, 0.15 and 0.2 mm/rev), cutting speed (200, 250 and 300 m/min) and depth of cut (0.5, 1.0 and 1.5 mm). The results were then analysed using analysis of variance (ANOVA).

Findings

Mechanical properties of the hybrid composite increases with reinforcement content. The surface roughness decreases with increasing cutting speed and conversely increases with increasing feed and depth of cut. The work piece surface temperature increases as cutting speed, feed and depth of cut increases. The ANOVA result reveals that feed plays a major role in minimising both surface roughness and surface temperature of work piece. The cutting speed and depth of cut follow feed in the order of importance, respectively.

Research limitations/implications

The vibration of the machine tool is a factor which may contribute to poor quality characteristics. This factor has not taken been into account in this analysis since major vibrations in the machine are induced due to the machining process.

Practical implications

Design and development of new hybrid metal matrix composites (HMMCs) with a detailed analysis on machining conditions. The findings could help in the production of composite with a higher degree of surface finish. This will enable the adoption of HMMCs as industrial product for mass scale production.

Originality/value

Good quality characteristics were achieved using optimum machining conditions arrived using a statistical modelling.

Access Restricted. View access options
Article
Publication date: 9 August 2013

N. Radhika, S. Babudeva Senapathi, R. Subramaniam, Rahul Subramany and K.N. Vishnu

The purpose of this paper is surface roughness prediction using pattern recognition for the aluminium hybrid metal matrix composite (HMMC).

305

Abstract

Purpose

The purpose of this paper is surface roughness prediction using pattern recognition for the aluminium hybrid metal matrix composite (HMMC).

Design/methodology/approach

Hybrid composites were manufactured using liquid metallurgy technique. The cast HMMC was machined using an industrial CNC turning centre and the machining vibration signals were acquired using an accelerometer. The acquired signals were processed and used to build a machine learning model for predicting surface finish based on the tool signature.

Findings

The authors established a technique for predicting and monitoring the surface quality during machining using a low cost accelerometer. It is capable of being integrated with the machine controller for online warning of deviations in surface roughness. The system is reconfigurable for any machining condition with a very short training period. The use of this model facilitates online surface roughness monitoring, avoiding the need for costly measuring equipment.

Originality/value

The model developed is innovative and not reported widely to the best of the authors' knowledge. The use of accelerometer‐based surface roughness prediction and control is an innovative approach for automation of machining process monitoring. These can be integrated into any existing machining centre as a standalone system or can be integrated into the CNC controller like Fanuc or Siemens.

Details

Industrial Lubrication and Tribology, vol. 65 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 14 March 2016

Yanzhong Wang, Wentao Niu, Song Wei and Guanhua Song

This paper aims to improve the cooling performance of the impinging jet to the machining and power transmissions, and provides more parameters to the design of the cooling system…

216

Abstract

Purpose

This paper aims to improve the cooling performance of the impinging jet to the machining and power transmissions, and provides more parameters to the design of the cooling system.

Design/methodology/approach

A multiphase flow model with heat transfer terms is established to calculate the convective heat transfer coefficient. The computational fluid dynamics method is used to simulate the jet flow. The convective heat transfer coefficients with different spray parameters are calculated and their variations are obtained. Temperatures are tested to reflect the cooling performance (convective heat transfer coefficients) with different spray parameters.

Findings

The results show that the higher convective heat transfer coefficient can be obtained with the same flow rate by decreasing nozzle diameter while increasing either the number of nozzles or the oil supply pressure. The spray distance was found to have little influence on convective heat transfer; however, the more the spray is directed parallel to the surface, the higher the convective heat transfer coefficient. The computational results coincide well with the experimental results.

Originality/value

The research presented here leads to a design reference guideline that could be used in machining and power transmissions to reduce the temperature, thus improving their quality and efficiency, and preventing failure at high speeds and/or under heavy loads.

Details

Industrial Lubrication and Tribology, vol. 68 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 13 March 2017

Wentao Niu, Yanzhong Wang, Yanyan Chen and Guanhua Song

This paper aims to reveal the mechanism of air barrier effect in jet lubrication and to figure out the influence of gear parameters and conditions on air barrier, thus providing…

302

Abstract

Purpose

This paper aims to reveal the mechanism of air barrier effect in jet lubrication and to figure out the influence of gear parameters and conditions on air barrier, thus providing guidance to the design of jet lubrication in ultra-high speed gear cooling system.

Design/methodology/approach

The computational fluid dynamics method is used to calculate the flow and pressure of ultra-high speed gears. The flow and pressure distributions are obtained under different gear parameters and working conditions, so their variations are obtained. A multiphase flow model is established to simulate the flow regime of oil jet to ultra-high speed gears. Simple experiments are carried out to observe the air barrier effect of high-speed gears.

Findings

Air barrier effect exists in the jet lubrication of ultra-high speed spur gears, which could prevent oil jet to reach on the gear surfaces. The results show that the generated pressure has positive relations with gear speed, module and width; however, as the increasing of gear width, their marginal contribution to pressure is decreasing. The computational results coincide well with the experimental results.

Originality/value

The research presented here proposed the air barrier effect of ultra-high speed gears for the first time. It also leads to a design reference guideline that could be used in jet lubrication of ultra-high speed gears, thus preventing lubrication and cooling failures.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 4 of 4
Per page
102050