Cengiz Kahraman, Nüfer Yasin Ateş, Sezi Çevik, Murat Gülbay and S. Ayça Erdoğan
To develop a multi‐attribute decision making model for evaluating and selecting among logistic information technologies.
Abstract
Purpose
To develop a multi‐attribute decision making model for evaluating and selecting among logistic information technologies.
Design/methodology/approach
First a multi‐attribute decision making model for logistic information technology evaluation and selection consisting of 4 main and 11 sub criteria is constructed, then a hierarchical fuzzy TOPSIS method is developed to solve the complex selection problem with vague and linguistic data. Sensitivity analysis is presented.
Findings
Reviews the literature and provides a structured hierarchical model for logistic information technology evaluation and selection based on the premise that the logistic information technology evaluation and selection problem can be viewed as a product of tangible benefits, intangible benefits, policy issues and resources. Defines tangible benefits as cost savings, increased revenue, and return on investment; intangible benefits as customer satisfaction, quality of information, multiple uses of information, and setting tone for future business; policy issues as risk and necessity level; resources as costs and completion time. Presents a methodology that is developed for the complex, uncertain and vague characteristics of the problem.
Research limitations/implications
Comparisons with other multi‐attribute decision making techniques such as AHP, ELECTRE, PROMETHEE and ORESTE under fuzzy conditions can be done for further research.
Practical implications
This article is a very useful source of information both for logistic managers and stakeholders in making decisions about logistic information technology investments.
Originality/value
This paper addresses the logistic information technology evaluation and selection criteria for practitioners and proposes a new multi‐attribute decision making methodology, hierarchical fuzzy TOPSIS, for the problem.