Sławomir Opałka, Dominik Szajerman and Adam Wojciechowski
The purpose of this paper is to apply recurrent neural networks (RNNs) and more specifically long-short term memory (LSTM)-based ones for mental task classification in terms of…
Abstract
Purpose
The purpose of this paper is to apply recurrent neural networks (RNNs) and more specifically long-short term memory (LSTM)-based ones for mental task classification in terms of BCI systems. The authors have introduced novel LSTM-based multichannel architecture model which proved to be highly promising in other fields, yet was not used for mental tasks classification.
Design/methodology/approach
Validity of the multichannel LSTM-based solution was confronted with the results achieved by a non-multichannel state-of-the-art solutions on a well-recognized data set.
Findings
The results demonstrated evident advantage of the introduced method. The best of the provided variants outperformed most of the RNNs approaches and was comparable with the best state-of-the-art methods.
Practical implications
The approach presented in the manuscript enables more detailed investigation of the electroencephalography analysis methods, invaluable for BCI mental tasks classification.
Originality/value
The new approach to mental task classification, exploiting LSTM-based RNNs with multichannel architecture, operating on spatial features retrieving filters, has been adapted to mental tasks with noticeable results. To the best of the authors’ knowledge, such an approach was not present in the literature before.