Search results
1 – 1 of 1Linghuan Li, Shibin Sun, Ronghua Zhuang, Bing Zhang, Zeyu Li and Jianying Yu
This study aims to develop a polymer cement-based waterproof coating with self-healing capability to efficiently and intelligently solve the building leakage caused by cracking of…
Abstract
Purpose
This study aims to develop a polymer cement-based waterproof coating with self-healing capability to efficiently and intelligently solve the building leakage caused by cracking of waterproof materials, along with excellent durability to prolong its service life.
Design/methodology/approach
Ion chelators are introduced into the composite system based on ethylene vinyl acetate copolymer emulsion and ordinary Portland cement to prepare self-healing polymer cement-based waterproof coating. Hydration, microstructure, wettability, mechanical properties, durability, self-healing performance and self-healing products of polymer cement-based waterproof coating with ion chelator are investigated systematically. Meanwhile, the chemical composition of self-healing products in the crack was examined.
Findings
The results showed that ion chelators could motivate the hydration of C2S and C3S, as well as the formation of hydration products (C-S-H gel) of the waterproof coating to improve its compactness. Compared with the control group, the waterproof coating with ion chelator had more excellent water resistance, alkali resistance, thermal and UV aging resistance. When the dosage of ion chelator was 2%, after 28 days of curing, cracks with a width of 0.29 mm in waterproof coating could fully heal and cracks with a width of 0.50 mm could achieve a self-healing efficiency of 72%. Furthermore, the results reveal that the self-healing product in the crack was calcite crystalline CaCO3.
Originality/value
A novel ion chelator was introduced into the composite coating system to endow it with excellent self-healing ability to prolong its service life. It has huge application potential in the field of building waterproofing.
Details