Search results
1 – 10 of 30Gary Koop, Roberto Leon-Gonzalez and Rodney Strachan
This paper develops methods of Bayesian inference in a cointegrating panel data model. This model involves each cross-sectional unit having a vector error correction…
Abstract
This paper develops methods of Bayesian inference in a cointegrating panel data model. This model involves each cross-sectional unit having a vector error correction representation. It is flexible in the sense that different cross-sectional units can have different cointegration ranks and cointegration spaces. Furthermore, the parameters that characterize short-run dynamics and deterministic components are allowed to vary over cross-sectional units. In addition to a noninformative prior, we introduce an informative prior which allows for information about the likely location of the cointegration space and about the degree of similarity in coefficients in different cross-sectional units. A collapsed Gibbs sampling algorithm is developed which allows for efficient posterior inference. Our methods are illustrated using real and artificial data.
This chapter investigates the impact of different state correlation assumptions for out-of-sample performance of unobserved components (UC) models with stochastic volatility…
Abstract
This chapter investigates the impact of different state correlation assumptions for out-of-sample performance of unobserved components (UC) models with stochastic volatility. Using several measures of US inflation the author finds that allowing for correlation between inflation’s trend and cyclical (or gap) components is a useful feature to predict inflation in the short run. In contrast, orthogonality between such components improves the out-of-sample performance as the forecasting horizon widens. Accordingly, trend inflation from orthogonal trend-gap UC models closely tracks survey-based measures of long-run inflation expectations. Trend dynamics in the correlated-component case behave similarly to survey-based nowcasts. To carry out estimation, an efficient algorithm which builds upon properties of Toeplitz matrices and recent advances in precision-based samplers is provided.
Details