Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 23 December 2020

Robert Kuehnen, Maged Youssef and Salah El-Fitiany

The design of buildings for fire events is essential to ensure occupant safety. Supplementary to simple prescriptive methods, performance-based fire design can be applied to…

114

Abstract

Purpose

The design of buildings for fire events is essential to ensure occupant safety. Supplementary to simple prescriptive methods, performance-based fire design can be applied to achieve a greater level of safety and flexibility in design. To make performance-based fire design more accessible, a time-equivalent method can be used to approximate a given natural fire event using a single standard fire with a specific duration. Doing so allows for natural fire events to be linked to the wealth of existing data from the standard fire scenario. The purpose of this paper is to review and assess the application of an existing time-equivalent method in the performance-based design of reinforced concrete (RC) beams.

Design/methodology/approach

The assessment is established by computationally developing the moment-curvature response of RC beam sections during fire exposure. The sectional response due to natural fire and time equivalent fire are compared.

Findings

It is shown that the examined time equivalent method is able to predict the sectional response with suitable accuracy for performance-based design purposes.

Originality/value

The research is the first to provide a comprehensive evaluation of the moment-curvature diagram of RC beams using time-equivalent standard fire scenarios that model realistic fire scenarios.

Details

Journal of Structural Fire Engineering, vol. 12 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 1 of 1
Per page
102050