Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 30 July 2024

Rishi Parvanda and Prateek Kala

Three-dimensional (3D) casting means using additive manufacturing (AM) techniques to print the mould for casting the cast tool. The printed mould, however, should be checked for…

43

Abstract

Purpose

Three-dimensional (3D) casting means using additive manufacturing (AM) techniques to print the mould for casting the cast tool. The printed mould, however, should be checked for its dimensional accuracy. 3D scanning can be used for the same. The purpose of this study is to combine the different AM techniques for 3D casting with 3D scanning to produce parts with close tolerance for preparing electrical discharge machining (EDM) electrodes.

Design/methodology/approach

The four processes, namely, stereolithography, selective laser sintering, fused deposition modelling and vacuum casting, are used to print the casting mould. The mould is designed in two halves, assembled to form a complete mould. The mould is 3D scanned in two stages: before and after using it as a casting mould. The mould's average and maximum dimensional deviations are calculated using 3D-scanned results. The eutectic Sn-Bi alloy is cast in the mould. The surface roughness of the mould and the cast tool are measured.

Findings

The cast tool is selected from the four processes in terms of dimensional accuracy and surface finish. The same is electroplated with copper. The microstructure of the cast tool (low-melting-point alloy) and deposited copper is analysed using a scanning electron microscope. Energy dispersive spectroscopy and X-ray diffraction techniques are used to verify the composition of the cast and coated alloy. The electroplated tool is finally tested on the EDM setup. The material removal rate and tool wear are measured. The performance is compared with a solid copper tool. The free-form customised EDM mould is also prepared, and the profile is cast out. The same is tested on the EDM. Thus, the developed path can be successfully used for rapid tooling applications.

Originality/value

The eutectic composition of Sn-Bi is cast in the 3D-printed mould using different AM techniques combined with 3D scanning quality to check its feasibility as an EDM electrode, which is a novel work and has not been done previously.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 28 June 2022

Rishi Parvanda and Prateek Kala

Fused deposition modelling (FDM) has gained popularity owing to its capability of producing complex and customized profiles at relatively low cost and in shorter periods. The…

203

Abstract

Purpose

Fused deposition modelling (FDM) has gained popularity owing to its capability of producing complex and customized profiles at relatively low cost and in shorter periods. The study aims to extend the use of FDM printers for 3D printing of low melting point alloy (LMPA), which has applications in the electronics industry, rapid tooling, biomedical, etc.

Design/methodology/approach

Solder is the LMPA with alloy’s melting temperature (around 200°C) lower than the parent metals. The most common composition of the solder, which is widely used, is tin and lead. However, lead is a hazardous material having environmental and health deteriorating effects. Therefore, lead-free Sn89Bi10Cu non-eutectic alloy in the form of filament was used. The step-by-step method has been used to identify the process window for temperature, print speed, filament length (E) and layer height. The existing FDM printer was customized for the present work.

Findings

Analysis of infrared images has been done to understand discontinuity at a certain range of process parameters. The effect of printing parameters on inter-bonding, width and thickness of the layers has also been studied. The microstructure of the parent material and deposited bead has been observed. Conclusions were drawn out based on the results, and the scope for the future has been pointed out.

Originality/value

The experiments resulted in the process window identification of print speed, extrusion temperature, filament length and layer height of Sn89Bi10Cu which is not done previously.

1 – 2 of 2
Per page
102050