Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 9 April 2019

Rehena Nasrin, Md. Hasanuzzaman and N.A. Rahim

Effective cooling is one of the challenges for photovoltaic thermal (PVT) systems to maintain the PV operating temperature. One of the best ways to enhance rate of heat transfer…

538

Abstract

Purpose

Effective cooling is one of the challenges for photovoltaic thermal (PVT) systems to maintain the PV operating temperature. One of the best ways to enhance rate of heat transfer of the PVT system is using advanced working fluids such as nanofluids. The purpose of this research is to develop a numerical model for designing different form of thermal collector systems with different materials. It is concluded that PVT system operated by nanofluid is more effective than water-based PVT system.

Design/methodology/approach

In this research, a three-dimensional numerical model of PVT with new baffle-based thermal collector system has been developed and solved using finite element method-based COMSOL Multyphysics software. Water-based different nanofluids (Ag, Cu, Al, etc.), various solid volume fractions up to 3 per cent and variation of inlet temperature (20-40°C) have been applied to obtain high thermal efficiency of this system.

Findings

The numerical results show that increasing solid volume fraction increases the thermal performance of PVT system operated by nanofluids, and optimum solid concentration is 2 per cent. The thermal efficiency is enhanced approximately by 7.49, 7.08 and 4.97 per cent for PVT system operated by water/Ag, water/Cu and water/Al nanofluids, respectively, compared to water. The extracted thermal energy from the PVT system decreases by 53.13, 52.69, 42.37 and 38.99 W for water, water/Al, water/Cu and water/Ag nanofluids, respectively, due to each 1°C increase in inlet temperature. The heat transfer rate from heat exchanger to cooling fluid enhances by about 18.43, 27.45 and 31.37 per cent for the PVT system operated by water/Al, water/Cu, water/Ag, respectively, compared to water.

Originality/value

This study is original and is not being considered for publication elsewhere. This is also not currently under review with any other journal.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 1 January 2014

Rehena Nasrin, M.A. Alim and Ali J. Chamkha

This work is focused on the numerical modeling of mixed convective heat transfer in a double lid-driven cavity filled with water-CuO nanofluid in the presence of internal heat…

272

Abstract

Purpose

This work is focused on the numerical modeling of mixed convective heat transfer in a double lid-driven cavity filled with water-CuO nanofluid in the presence of internal heat generation. The paper aims to discuss these issues.

Design/methodology/approach

The flow field is modeled using a generalized form of the momentum and energy equations. Discretization of the governing equations is achieved using the penalty finite element scheme based on the Galerkin method of weighted residuals.

Findings

The effects of pertinent parameters such as the internal heat generation parameter (Q), the Richardson number (Ri) and the solid volume fraction () on the flow and heat transfer characteristics are presented and discussed. The obtained results depict that the Richardson number plays a significant role on the heat transfer characterization within the triangular wavy chamber. Also, the present results show that an increase in volume fraction has a significant effect on the flow patterns.

Research limitations/implications

Because of the chosen research approach numerically, the research results may lack generalisability. Therefore, researchers are encouraged to test the proposed propositions experimentally.

Practical implications

A nanofluid is a base fluid with suspended metallic nanoparticles. Because traditional fluids used for heat transfer applications such as water, mineral oils and ethylene glycol have a rather low thermal conductivity, nanofluids with relatively higher thermal conductivities have attracted enormous interest from researchers due to their potential in enhancement of heat transfer with little or no penalty in pressure drop.

Originality/value

This paper fulfils an identified need to study how brand-supportive behaviour can be enabled.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Available. Open Access. Open Access

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

1 – 3 of 3
Per page
102050