Search results
1 – 10 of 543Huiliang Cao, Rang Cui, Wei Liu, Tiancheng Ma, Zekai Zhang, Chong Shen and Yunbo Shi
To reduce the influence of temperature on MEMS gyroscope, this paper aims to propose a temperature drift compensation method based on variational modal decomposition (VMD)…
Abstract
Purpose
To reduce the influence of temperature on MEMS gyroscope, this paper aims to propose a temperature drift compensation method based on variational modal decomposition (VMD), time-frequency peak filter (TFPF), mind evolutionary algorithm (MEA) and BP neural network.
Design/methodology/approach
First, VMD decomposes gyro’s temperature drift sequence to obtain multiple intrinsic mode functions (IMF) with different center frequencies and then Sample entropy calculates, according to the complexity of the signals, they are divided into three categories, namely, noise signals, mixed signals and temperature drift signals. Then, TFPF denoises the mixed-signal, the noise signal is directly removed and the denoised sub-sequence is reconstructed, which is used as training data to train the MEA optimized BP to obtain a temperature drift compensation model. Finally, the gyro’s temperature characteristic sequence is processed by the trained model.
Findings
The experimental result proved the superiority of this method, the bias stability value of the compensation signal is 1.279 × 10–3°/h and the angular velocity random walk value is 2.132 × 10–5°/h/vHz, which is improved compared to the 3.361°/h and 1.673 × 10–2°/h/vHz of the original output signal of the gyro.
Originality/value
This study proposes a multi-dimensional processing method, which treats different noises separately, effectively protects the low-frequency characteristics and provides a high-precision training set for drift modeling. TFPF can be optimized by SEVMD parallel processing in reducing noise and retaining static characteristics, MEA algorithm can search for better threshold and connection weight of BP network and improve the model’s compensation effect.
Details
Keywords
Ming Gao, Dongkai Li, Kun Liu, Shuliang Xu, Feng Zhao, Ben Guo, Anhui Pan, Xiao Xie and Huanre Han
The brake pipe system was an essential braking component of the railway freight trains, but the existing E-type sealing rings had problems such as insufficient low-temperature…
Abstract
Purpose
The brake pipe system was an essential braking component of the railway freight trains, but the existing E-type sealing rings had problems such as insufficient low-temperature resistance, poor heat stability and short service life. To address these issues, low-phenyl silicone rubber was prepared and tested, and the finite element analysis and experimental studies on the sealing performance of its sealing rings were carried out.
Design/methodology/approach
The low-temperature resistance and thermal stability of the prepared low-phenyl silicone rubber were studied using low-temperature tensile testing, differential scanning calorimetry, dynamic thermomechanical analysis and thermogravimetric analysis. The sealing performance of the low-phenyl silicone rubber sealing ring was studied by using finite element analysis software abaqus and experiments.
Findings
The prepared low-phenyl silicone rubber sealing ring possessed excellent low-temperature resistance and thermal stability. According to the finite element analysis results, the finish of the flange sealing surface and groove outer edge should be ensured, and extrusion damage should be avoided. The sealing rings were more susceptible to damage in high compression ratio and/or low-temperature environments. When the sealing effect was ensured, a small compression ratio should be selected, and rubbers with hardness and elasticity less affected by temperature should be selected. The prepared low-phenyl silicone rubber sealing ring had zero leakage at both room temperature (RT) and −50 °C.
Originality/value
The innovation of this study is that it provides valuable data and experience for the future development of the sealing rings used in the brake pipe flange joints of the railway freight cars in China.
Details
Keywords
Jun Cao, Zhongwei Yin, Yuqing Cui, Hulin Li, Gengyuan Gao and Xinbo Wang
The purpose of this study was to solve the problem of most woven-fabric self-lubricating bearings that find it difficult to function at temperatures above 320°C, by designing a…
Abstract
Purpose
The purpose of this study was to solve the problem of most woven-fabric self-lubricating bearings that find it difficult to function at temperatures above 320°C, by designing a new type of new nuclear joint bearing. The results of this study will help designers to achieve accurate stress distribution, displacement deformation, fatigue life and damage of bearings. All of these can be a guide for designing self-lubricating joint bearings.
Design/methodology/approach
Finite element analysis is undertaken to simulate the new design bearings. To get the most appropriate and accurate results, the room temperature simulation (Simulation A), the modulus of elasticity that changes with temperature (Simulation B) and the thermal-structure-coupled simulation (Simulation C) are compared. The fatigue simulation is conducted to verify whether the self-lubricating method is reasonable and whether the bearing can function for over 60 years in an enclosed environment.
Findings
Stress distribution and displacement deformation of joint bearing can be accurately achieved via the thermal-structure coupled simulation. Work life and damage results have been achieved via the fatigue analysis, and the suggested working loads can be calculated via safety factors.
Originality/value
The newly designed joint bearing in which the graphite is laid on the outside of the inner ring functions and self-lubricates at temperatures above 320°C.
Details
Keywords
Yongcun Cui, Sier Deng, Haisheng Yang, Wenhu Zhang and Rongjun Niu
The purpose of this paper is to study the influence of the cage dynamic unbalance on the dynamic performances in cylindrical roller bearings.
Abstract
Purpose
The purpose of this paper is to study the influence of the cage dynamic unbalance on the dynamic performances in cylindrical roller bearings.
Design/methodology/approach
The dynamic analysis model which considering cage dynamic unbalance is presented, and the relationship between the cage dynamic unbalance and the cage stability, the cage slip ratio and the cage skew angle is investigated.
Findings
Cage dynamic unbalance has a great effect on the cage stability. The cage dynamic unbalance which in an axial excursion affects the cage characteristics is greater than that only in the radial direction. The cage slip ratio and the cage skew increases with the cage dynamic unbalance, especially with the axial excursion. The non-metal cage is more sensitive to the cage dynamic unbalance than that of the metal cage.
Originality/value
The analytical method and model can be applied by the bearing engineering designers.
Details
Keywords
Yongcun Cui, Sier Deng, Yanguang Ni and Guoding Chen
The purpose of this study is to investigate the effect of roller dynamic unbalance on cage stress.
Abstract
Purpose
The purpose of this study is to investigate the effect of roller dynamic unbalance on cage stress.
Design/methodology/approach
Considering the impact of roller dynamic unbalance, the dynamic analysis model of high-speed cylindrical roller bearing is established. And then the results of dynamic model are used as the boundary conditions for the finite element analysis model of roller and cage to obtain the cage stress.
Findings
Roller dynamic unbalance affects the contact status between roller and cage pocket and causes the overall increase in cage stress. The most significant impact on cage stress is roller dynamic unbalance in angular direction of roller axis, followed by radial and axial directions. Smaller radial clearance of bearing and a reasonable range of pocket clearance are beneficial to reduce the impact of roller dynamic unbalance on cage stress; the larger cage guide clearance is a disadvantage to decrease cage stress. The impact of roller dynamic unbalance on cage stress under high-speed condition is greater than that in low-speed conditions.
Originality/value
The research can provide some theoretical guidance for the design and manufacture of bearing in high-speed cylindrical roller bearing.
Details
Keywords
Han Zhao, Qingmiao Ding, Yaozhi Li, Yanyu Cui and Junjie Luo
This paper aims to study the influence of microparticles on the surface cavitation behavior of 2Cr3WMoV steel; microparticle suspensions of different concentration, particle size…
Abstract
Purpose
This paper aims to study the influence of microparticles on the surface cavitation behavior of 2Cr3WMoV steel; microparticle suspensions of different concentration, particle size, material and shape were prepared based on ultrasonic vibration cavitation experimental device.
Design/methodology/approach
2Cr3WMoV steel was taken as the research object for ultrasonic cavitation experiment. The morphology, quantity and distribution of cavitation pits were observed and analyzed by metallographic microscope and scanning electron microscope.
Findings
The study findings showed that the surface cavitation process produced pinhole cavitation pits on the surface of 2Cr3WMoV steel. High temperature in the process led to oxidation and carbon precipitation on the material surface, resulting in the “rainbow ring” cavitation morphology. Both the concentration and size of microparticles affected the number of pits on the material surface. When the concentration of microparticles was 1 g/L, the number of pits reached the maximum, and when the size of microparticles was 20 µm, the number of pits reached the minimum. The microparticles of Fe3O4, Al2O3, SiC and SiO2 all increased the number of pits on the surface of 2Cr3WMoV steel. In addition, the distribution of pits of spherical microparticles was more concentrated than that of irregularly shaped microparticles in turbidity.
Originality/value
Most of the current studies have not systematically focused on the effect of each factor of microparticles on the cavitation behavior when they act separately, and the results of the studies are more scattered and varied. At the same time, it has not been found to carry out the study of microparticle cavitation with 2Cr3WMoV steel as the research material, and there is a lack of relevant cavitation morphology and experimental data.
Details
Keywords
Sier Deng, Jinfang Gu, Yongcun Cui and Wenhu Zhang
This study aims to analyze the roller dynamic characteristics and cage whirling of tapered roller bearing considering roller tilt and skew which provide a theoretical basis for…
Abstract
Purpose
This study aims to analyze the roller dynamic characteristics and cage whirling of tapered roller bearing considering roller tilt and skew which provide a theoretical basis for the design and application of tapered roller bearing.
Design/methodology/approach
Based on rolling bearing dynamic analysis, the dynamic differential equations of tapered roller bearing are established. Fine integral method and predict correct Adams–Bashforth–Moulton multi-step method are used to solve the dynamic differential equations of tapered roller bearings.
Findings
Friction at the flange contact between roller and large flange is the chief factor of roller skew. In comparison to cone speed, axial loads have more visible effect on roller skew, and proper speed or axial load is beneficial to sustain cage motion and decrease cage instability. Under the combined effort of axial load and radial load, the distribution of roller skew is correlated to the roller-flange contact load. In addition, roller skew angle in loaded zone is larger than that in unloaded zone; hence, it is helpful for cage stability if an extent radial load is applied. The pocket clearance of cage has very small influence on roller skew; therefore, a reasonable pocket clearance is suggested to assure minimum instability of cage. Friction coefficient of flange contact has a large effect on roller skew, and cage whirl is found to demonstrate a circular orbit with increasing friction coefficient.
Originality/value
The dynamic differential equations of tapered roller bearing considering roller large end/inner ring back face rib contact under various lubrication states were established. The impact of flange friction working conditions and cage pocket clearance on cage instability and roller skew were focused on. It is the first time that the ratio of the standard deviation of the cage-center translational speed to its mean value is used to access the instability of cage in tapered roller bearing.
Details
Keywords
Bearings in electric machines often work in high speed, light load and vibration load conditions. The purpose of this paper is to find a new fatigue damage accumulation rating…
Abstract
Purpose
Bearings in electric machines often work in high speed, light load and vibration load conditions. The purpose of this paper is to find a new fatigue damage accumulation rating life model of ball bearings, which is expected for calculating fatigue life of ball bearings more accurately under vibration load, especially in high speed and light load conditions.
Design/methodology/approach
A new fatigue damage accumulation rating life model of ball bearings considering time-varying vibration load is proposed. Vibration equations of rotor-bearing system are constructed and solved by Runge–Kutta method. The modified rating life and modified reference rating life model under vibration load is also proposed. Contrast of the three fatigue life models and the influence of dynamic balance level, rotating speed, preload of ball bearings on bearing’s fatigue life are analyzed.
Findings
To calculate fatigue rating life of ball bearings more accurately under vibration load, especially in high speed and light load conditions, the fatigue damage accumulation rating life model should be considered. The optimum preload has an obvious influence on fatigue rating life.
Originality/value
This paper used analytical method and model that is helpful for design of steel ball bearing in high speed, light load and vibration load conditions.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2019-0180/
Details
Keywords
Wardah Anam, Khurram Shehzad Akhtar, Faheem Ahmad, Abher Rasheed, Abher Rasheed, Muhammad Mohsin, Farooq Azam, Tehseen Ullah and Sheraz Ahmad
The purpose of this study was to produce yarns from three different spinning techniques, i.e.Murata Vortex Spinning (MVS) ring spinning and rotor spinning. Those yarns were then…
Abstract
Purpose
The purpose of this study was to produce yarns from three different spinning techniques, i.e.Murata Vortex Spinning (MVS) ring spinning and rotor spinning. Those yarns were then used to produce fabrics. Then, the effect of silicone softener on tactile comfort of fabric was investigated.
Design/methodology/approach
Three different yarns, i.e. Ring, Rotor and MVS yarns, were used to make fabrics using CCI sample loom which were then subjected to post treatments like desizing, scouring and bleaching. After the completion of the dyeing process, silicone-based softener was used to improve the hand feel of fabrics. The structures of three yarns were evaluated using Scanning electron microscopy. The fabrics were evaluated against compression, bending and surface properties using Kawabata evaluation system.
Findings
The fabric made of MVS yarn depicted more geometrical roughness, coefficient of friction and bending rigidity but less compressibility as compared to fabrics made with other yarns. It was observed that softener concentration has a direct relationship with thickness and bending rigidity of the fabric, and inverse relationship with coefficient of friction and geometrical roughness of the fabric.
Originality/value
MVS yarn has some superior properties over rotor and ring spun yarn like high production rates, high resistance to pilling, clear appearance and stability against deformation but has disadvantage that it has less compressibility. Therefore, softener is applied on the fabric, to address this issue, so that it could also be used for apparels application.
Details
Keywords
The purpose of this paper is to find a new logarithmic profile model of cylindrical roller bearing, which is expected to avoid edge effect and allow a straight portion on the…
Abstract
Purpose
The purpose of this paper is to find a new logarithmic profile model of cylindrical roller bearing, which is expected to avoid edge effect and allow a straight portion on the roller considering uniform pressure distribution and easier manufacturing.
Design/methodology/approach
A new logarithmic cylindrical roller profile model using three parameters is proposed. Contact model between roller and rings and quasi-static model of roller bearing are given to obtain contact pressure distribution and solved by multi-grid and Newton–Raphson method. Optimization of modified reference rating life model of the roller bearing is proposed by using genetic algorithms.
Findings
Under heavy load or tilting moment conditions, modified reference rating life of cylindrical roller bearing may increase greatly by optimization of three design parameters using the new logarithmic profile model.
Originality/value
The results of the present paper could aid in the design of logarithmic profile of cylindrical roller bearing and increase fatigue life of cylindrical roller bearing.
Details