Search results

1 – 10 of 13
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 17 September 2008

Randolph C. Rach

To provide a new proof of convergence of the Adomian decomposition series for solving nonlinear ordinary and partial differential equations based upon a thorough examination of…

1421

Abstract

Purpose

To provide a new proof of convergence of the Adomian decomposition series for solving nonlinear ordinary and partial differential equations based upon a thorough examination of the historical milieu preceding the Adomian decomposition method.

Design/methodology/approach

Develops a theoretical background of the Adomian decomposition method under the auspices of the Cauchy‐Kovalevskaya theorem of existence and uniqueness for solution of differential equations. Beginning from the concepts of a parametrized Taylor expansion series as previously introduced in the Murray‐Miller theorem based on analytic parameters, and the Banach‐space analog of the Taylor expansion series about a function instead of a constant as briefly discussed by Cherruault et al., the Adomian decompositions series and the series of Adomian polynomials are found to be a uniformly convergent series of analytic functions for the solution u and the nonlinear composite function f(u). To derive the unifying formula for the family of classes of Adomian polynomials, the author develops the novel notion of a sequence of parametrized partial sums as defined by truncation operators, acting upon infinite series, which induce these parametrized sums for simple discard rules and appropriate decomposition parameters. Thus, the defining algorithm of the Adomian polynomials is the difference of these consecutive parametrized partial sums.

Findings

The four classes of Adomian polynomials are shown to belong to a common family of decomposition series, which admit solution by recursion, and are derived from one unifying formula. The series of Adomian polynomials and hence the solution as computed as an Adomian decomposition series are shown to be uniformly convergent. Furthermore, the limiting value of the mth Adomian polynomial approaches zero as the index m approaches infinity for the prerequisites of the Cauchy‐Kovalevskaya theorem. The novel truncation operators as governed by discard rules are analogous to an ideal low‐pass filter, where the decomposition parameters represent the cut‐off frequency for rearranging a uniformly convergent series so as to induce the parametrized partial sums.

Originality/value

This paper unifies the notion of the family of Adomian polynomials for solving nonlinear differential equations. Further it presents the new notion of parametrized partial sums as a tool for rearranging a uniformly convergent series. It offers a deeper understanding of the elegant and powerful Adomian decomposition method for solving nonlinear ordinary and partial differential equations, which are of paramount importance in modeling natural phenomena and man‐made device performance parameters.

Details

Kybernetes, vol. 37 no. 7
Type: Research Article
ISSN: 0368-492X

Keywords

Access Restricted. View access options
Article
Publication date: 19 April 2013

Lazhar Bougoffa and Randolph C. Rach

The purpose of this paper is to present a new approach to solve nonlocal boundary value problems of linear and nonlinear first‐ and second‐order differential equations subject to…

227

Abstract

Purpose

The purpose of this paper is to present a new approach to solve nonlocal boundary value problems of linear and nonlinear first‐ and second‐order differential equations subject to nonlocal conditions of integral type.

Design/methodology/approach

The authors first transform the given nonlocal boundary value problems of first‐ and second‐order differential equations into local boundary value problems of second‐ and third‐order differential equations, respectively. Then a modified Adomian decomposition method is applied, which permits convenient resolution of these equations.

Findings

The new technique, as presented in this paper in extending the applicability of the Adomian decomposition method, has been shown to be very efficient for solving nonlocal boundary value problems of linear and nonlinear first‐ and second‐order differential equations subject to nonlocal conditions of integral type.

Originality/value

The paper presents a new solution algorithm for the nonlocal boundary value problems of linear and nonlinear first‐ and second‐order differential equations subject to nonlocal conditions of integral type.

Access Restricted. View access options
Article
Publication date: 2 March 2012

Lazhar Bougoffa, Manal Al‐Haqbani and Randolph C. Rach

In this paper, Fredholm integral equations of the first kind, the Schlomilch integral equation, and a class of related integral equations of the first kind with constant limits of…

343

Abstract

Purpose

In this paper, Fredholm integral equations of the first kind, the Schlomilch integral equation, and a class of related integral equations of the first kind with constant limits of integration are transformed in such a manner that the Adomian decomposition method (ADM) can be applied. Some examples with closed‐form solutions are studied in detail to further illustrate the proposed technique, and the results obtained indicate this approach is indeed practical and efficient. The purpose of this paper is to develop a new iterative procedure where the integral equations of the first kind are recast into a canonical form suitable for the ADM. Hence it examines how this new procedure provides the exact solution.

Design/methodology/approach

The new technique, as presented in this paper in extending the applicability of the ADM, has been shown to be very efficient for solving Fredholm integral equations of the first kind, the Schlomilch integral equation and a related class of nonlinear integral equations with constant limits of integration.

Findings

By using the new proposed technique, the ADM can be easily used to solve the integral equations of the first kind, the Schlomilch integral equation, and a class of related integral equations of the first kind with constant limits of integration.

Originality/value

The paper shows that this new technique is easy to implement and produces accurate results.

Available. Content available
Article
Publication date: 16 October 2009

476

Abstract

Details

Kybernetes, vol. 38 no. 9
Type: Research Article
ISSN: 0368-492X

Available. Content available
2358

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Access Restricted. View access options
Article
Publication date: 1 February 2013

Randolph Rach, Abdul‐Majid Wazwaz and Jun‐Sheng Duan

The purpose of this paper is to propose a new modification of the Adomian decomposition method for resolution of higher‐order inhomogeneous nonlinear initial value problems.

661

Abstract

Purpose

The purpose of this paper is to propose a new modification of the Adomian decomposition method for resolution of higher‐order inhomogeneous nonlinear initial value problems.

Design/methodology/approach

First the authors review the standard Adomian decomposition scheme and the Adomian polynomials for solving nonlinear differential equations. Next, the advantages of Duan's new algorithms and subroutines for fast generation of the Adomian polynomials to high orders are discussed. Then algorithms are considered for the solution of a sequence of first‐, second‐, third‐ and fourth‐order inhomogeneous nonlinear initial value problems with constant system coefficients by the new modified recursion scheme in order to derive a systematic algorithm for the general case of higher‐order inhomogeneous nonlinear initial value problems.

Findings

The authors investigate seven expository examples of inhomogeneous nonlinear initial value problems: the exact solution was known in advance, in order to demonstrate the rapid convergence of the new approach, including first‐ through sixth‐order derivatives and quadratic, cubic, quartic and exponential nonlinear terms in the solution and a sextic nonlinearity in the first‐order derivative. The key difference between the various modified recursion schemes is the choice of the initial solution component, using different choices to partition and delay the subsequent parts through the recursion steps. The authors' new approach extends this concept.

Originality/value

The new modified decomposition method provides a significant advantage for computing the solution's Taylor expansion series, both systematically and rapidly, as demonstrated in the various expository examples.

Access Restricted. View access options
Article
Publication date: 7 November 2016

Abdul-Majid Wazwaz, Randolph Rach and Lazhar Bougoffa

The purpose of this paper is to use the Adomian decomposition method (ADM) for solving boundary value problems with dual solutions.

209

Abstract

Purpose

The purpose of this paper is to use the Adomian decomposition method (ADM) for solving boundary value problems with dual solutions.

Design/methodology/approach

The ADM has been previously demonstrated to be eminently practical with widespread applicability to frontier problems arising in scientific applications. In this work, the authors seek to determine the relative merits of the ADM in the context of several important nonlinear boundary value models characterized by the existence of dual solutions.

Findings

The ADM is shown to readily solve specific nonlinear BVPs possessing more than one solution. The decomposition series solution of these models requires the calculation of the Adomian polynomials appropriate to the particular system nonlinearity. The authors show that the ADM solves these models for any analytic nonlinearity in a practical and straightforward manner. The conclusions are supported by several numerical examples arising in various scientific applications which admit dual solutions.

Originality/value

This paper presents an accurate work for solving nonlinear BVPs that possess dual solutions. The authors have demonstrated the widespread applicability of the ADM for solving various forms of these nonlinear equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 18 October 2011

Abdul‐Majid Wazwaz and Randolph Rach

The purpose of this paper is to provide a comparison of the Adomian decomposition method (ADM) with the variational iteration method (VIM) for solving the Lane‐Emden equations of…

608

Abstract

Purpose

The purpose of this paper is to provide a comparison of the Adomian decomposition method (ADM) with the variational iteration method (VIM) for solving the Lane‐Emden equations of the first and second kinds.

Design/methodology/approach

The paper examines the theoretical framework of the Adomian decomposition method and compares it with the variational iteration method. The paper seeks to determine the relative merits and computational benefits of both the Adomian decomposition method and the variational iteration method in the context of the important physical models of the Lane‐Emden equations of the first and second kinds.

Findings

The Adomian decomposition method is shown to readily solve the Lane‐Emden equations of both the first and second kinds for all positive real values of the system coefficient α and for all positive real values of the nonlinear exponent m. The decomposition series solution of these nonlinear differential equations requires the calculation of the Adomian polynomials appropriate to the particular system nonlinearity. The paper shows that the variational iteration method works effectively to solve the Lane‐Emden equation of the first kind for system coefficient values α=1, 2, 3, 4 but only for positive integer values of the nonlinear exponent m. The successive approximations of the solution of these nonlinear differential equations require the determination of the appropriate Lagrange multipliers, which are established in this paper. These two methodologies overcome the singular behavior at the origin x=0. The paper shows that the variational iteration method is impractical for solving either the Lane‐Emden equation of the first kind for non‐integer values of the system exponent m or the Lane‐Emden equations of the second kind. Indeed the Adomian decomposition method is shown to solve even the generalized Lane‐Emden equation for any analytic nonlinearity and all positive values of the system coefficient α in a practical and straightforward manner. The conclusions are supported by several numerical examples.

Originality/value

This paper presents an accurate comparison of the Adomian decomposition method with the variational iteration method for solving the Lane‐Emden equations of the first and second kinds. The paper presents a new solution algorithm for the generalized Lane‐Emden equation for any analytic system nonlinearity and for any model geometry as characterized by all possible positive real values of the system coefficient α.

Access Restricted. View access options
Article
Publication date: 5 May 2015

Lazhar Bougoffa, Randolph Rach, Abdul-Majid Wazwaz and Jun-Sheng Duan

The purpose of this paper is concerned with a reliable treatment of the classical Stephan problem. The Adomian decomposition method (ADM) is used to carry out the analysis…

362

Abstract

Purpose

The purpose of this paper is concerned with a reliable treatment of the classical Stephan problem. The Adomian decomposition method (ADM) is used to carry out the analysis, Moreover, the authors extend the work to examine the Stefan problem with variable latent heat. The study confirms the accuracy and efficiency of the employed method.

Design/methodology/approach

The new technique, as presented in this paper in extending the applicability of the ADM, has been shown to be very efficient for solving the Stefan problem.

Findings

The Stefan problem with variable latent heat was examined as well. The ADM was effectively used for analytic treatment of the Stefan problem with and without variable latent heat.

Originality/value

The paper presents a new solution algorithm for the Stefan problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 30 October 2023

Rachel Greenfield

This paper aims to examine the marketing strategies designed by three innovative early 1900s food companies. It traces the coordination of these businesses’ research funding…

124

Abstract

Purpose

This paper aims to examine the marketing strategies designed by three innovative early 1900s food companies. It traces the coordination of these businesses’ research funding, advertising, direct mail and promotional tactics to show how they intersected and impacted consumers and health professionals in the period when scientists were first able to quantify the relationship between good health and food. The paper analyzes internal company documents, advertisements and marketing materials from Knox Gelatine, Borden and Sunkist.

Design/methodology/approach

Research for this paper benefited from the author’s unlimited access to the private documents of the Knox Gelatine Company and its executives. These documents were analyzed chronologically and thematically. They chronicled the company’s attempts to influence the medical world and the ways it cultivated home economists. The paper also used publicly available digitized documents from Sunkist and Borden. The paper would benefit from further detailed analysis of these documents to parse Knox’s targeting by race and ethnicity.

Findings

In the 1920s, Knox, Borden and Sunkist developed a marketing strategy which leveraged a new class of experts – the hundreds of thousands of medical professionals, home economists, teachers and government agents who advised American women. By distributing specific laboratory research on the nutritional benefits of their products to this emerging class of health professionals and the consumers who trusted them, these companies developed relationships with opinion leaders designed specifically to influence product sales.

Research limitations/implications

This research benefited from access to the private documents of Knox Gelatine Company which divulge the company’s attempts to influence the medical world and cultivate home economists. The paper would benefit from further analysis of these documents to parse the company’s targeting by race and ethnicity as well as a deeper comparison to companies that tried to work with health professionals unsuccessfully and companies that adopted this tactic in the household products or tobacco area. Opportunities also exist to do a fuller analysis of variations in food marketing by rural versus urban as well as race.

Originality/value

By reconstructing the sequencing and content of these three companies’ 1920s marketing strategies, this research uncovers a form of early 20th century food marketing directed at health and science professionals which has been neglected in advertising histories.

Details

Journal of Historical Research in Marketing, vol. 15 no. 3
Type: Research Article
ISSN: 1755-750X

Keywords

1 – 10 of 13
Per page
102050