Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 4 June 2024

Rami Al-Jarrah and Faris M. AL-Oqla

This work introduces an integrated artificial intelligence schemes to enhance accurately predicting the mechanical properties of cellulosic fibers towards boosting their…

50

Abstract

Purpose

This work introduces an integrated artificial intelligence schemes to enhance accurately predicting the mechanical properties of cellulosic fibers towards boosting their reliability for more sustainable industries.

Design/methodology/approach

Fuzzy clustering and stacked method approach were utilized to predict the mechanical performance of the fibers. A reference dataset contains comprehensive information regarding mechanical behavior of the lignocellulosic fibers was compiled from previous experimental investigations on mechanical properties for eight different fiber materials. Data encompass three key factors: Density of 0.9–1.6 g/cm3, Diameter of 5.9–1,000 µm, and Microfibrillar angle of 2–49 deg were utilized. Initially, fuzzy clustering technique was utilized for the data. For validating proposed model, ultimate tensile strength and elongation at break were predicted and then examined against unseen new data that had not been used during model development.

Findings

The output results demonstrated remarkably accurate and highly acceptable predictions results. The error analysis for the proposed method was discussed by using statistical criteria. The stacked model proved to be effective in significantly reducing level of uncertainty in predicting the mechanical properties, thereby enhancing model’s reliability and precision. The study demonstrates the robustness and efficacy of the stacked method in accurately estimating mechanical properties of lignocellulosic fibers, making it a valuable tool for material scientists and engineers in various applications.

Originality/value

Cellulosic fibers are essential for biomaterials to enhance developing green sustainable bio-products. However, such fibers have diverse characteristics according to their types, chemical composition and structure causing inconsistent mechanical performance. This work introduces an integrated artificial intelligence schemes to enhance accurately predicting the mechanical properties of cellulosic fibers towards boosting their reliability for more sustainable industries. Fuzzy clustering and stacked method approach were utilized to predict the mechanical performance of the fibers.

Details

Engineering Computations, vol. 41 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 5 February 2024

Mohammad A Gharaibeh and Ayman Alkhatatbeh

The continuous increase of energy demands is a critical worldwide matter. Jordan’s household sector accounts for 44% of overall electricity usage annually. This study aims to use…

32

Abstract

Purpose

The continuous increase of energy demands is a critical worldwide matter. Jordan’s household sector accounts for 44% of overall electricity usage annually. This study aims to use artificial neural networks (ANNs) to assess and forecast electricity usage and demands in Jordan’s residential sector.

Design/methodology/approach

Four parameters are evaluated throughout the analysis, namely, population (P), income level (IL), electricity unit price (E$) and fuel unit price (F$). Data on electricity usage and independent factors are gathered from government and literature sources from 1985 to 2020. Several networks are analyzed and optimized for the ANN in terms of root mean square error, mean absolute percentage error and coefficient of determination (R2).

Findings

The predictions of this model are validated and compared with literature-reported models. The results of this investigation showed that the electricity demand of the Jordanian household sector is mainly driven by the population and the fuel price. Finally, time series analysis approach is incorporated to forecast the electricity demands in Jordan’s residential sector for the next decade.

Originality/value

The paper provides useful recommendations and suggestions for the decision-makers in the country for dynamic planning for future resource policies in the household sector.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

1 – 2 of 2
Per page
102050