The purpose of the method is to develop a numerical method for the solution of nonlinear partial differential equations.
Abstract
Purpose
The purpose of the method is to develop a numerical method for the solution of nonlinear partial differential equations.
Design/methodology/approach
A new numerical approach based on Barycentric Rational interpolation has been used to solve partial differential equations.
Findings
A numerical technique based on barycentric rational interpolation has been developed to investigate numerical simulation of the Burgers’ and Fisher’s equations. Barycentric interpolation is basically a variant of well-known Lagrange polynomial interpolation which is very fast and stable. Using semi-discretization for unknown variable and its derivatives in spatial direction by barycentric rational interpolation, we get a system of ordinary differential equations. This system of ordinary differential equation’s has been solved by applying SSP-RK43 method. To check the efficiency of the method, computed numerical results have been compared with those obtained by existing methods. Barycentric method is able to capture solution behavior at small values of kinematic viscosity for Burgers’ equation.
Originality/value
To the best of the authors’ knowledge, the method is developed for the first time and validity is checked by stability and error analysis.
Details
Keywords
This paper aims to develop a novel numerical method based on bi-cubic B-spline functions and alternating direction (ADI) scheme to study numerical solutions of advection diffusion…
Abstract
Purpose
This paper aims to develop a novel numerical method based on bi-cubic B-spline functions and alternating direction (ADI) scheme to study numerical solutions of advection diffusion equation. The method captures important properties in the advection of fluids very efficiently. C.P.U. time has been shown to be very less as compared with other numerical schemes. Problems of great practical importance have been simulated through the proposed numerical scheme to test the efficiency and applicability of method.
Design/methodology/approach
A bi-cubic B-spline ADI method has been proposed to capture many complex properties in the advection of fluids.
Findings
Bi-cubic B-spline ADI technique to investigate numerical solutions of partial differential equations has been studied. Presented numerical procedure has been applied to important two-dimensional advection diffusion equations. Computed results are efficient and reliable, have been depicted by graphs and several contour forms and confirm the accuracy of the applied technique. Stability analysis has been performed by von Neumann method and the proposed method is shown to satisfy stability criteria unconditionally. In future, the authors aim to extend this study by applying more complex partial differential equations. Though the structure of the method seems to be little complex, the method has the advantage of using small processing time. Consequently, the method may be used to find solutions at higher time levels also.
Originality/value
ADI technique has never been applied with bi-cubic B-spline functions for numerical solutions of partial differential equations.