Damijan Markovic, Rainer Niekamp, Adnan Ibrahimbegović, Hermann G. Matthies and Robert L. Taylor
To provide a computational strategy for highly accurate analyses of non‐linear inelastic behaviour for heterogeneous structures in civil and mechanical engineering applications
Abstract
Purpose
To provide a computational strategy for highly accurate analyses of non‐linear inelastic behaviour for heterogeneous structures in civil and mechanical engineering applications
Design/methodology/approach
Adapts recent developments on mathematical formulations of multi‐scale problems to the recently developed component technology based on C++ generic templates programming.
Findings
Provides the understanding how theoretical hypotheses, concerning essentially the multi‐scale interface conditions, affect the computational precision of the strategy.
Practical implications
The present approach allows a very precise modelling of multi‐scale aspects in structural mechanics problems and can play an essential tool in searching for an optimal structural design.
Originality/value
Provides all the ingredients for constructing an efficient multi‐scale computational framework, from the theoretical formulation to the implementation for parallel computing. It is addressed to researchers and engineers analysing composite structures under extreme loading.
Details
Keywords
Rainer Niekamp, Damijan Markovic, Adnan Ibrahimbegovic, Hermann G. Matthies and Robert L. Taylor
The purpose of this paper is to consider the computational tools for solving a strongly coupled multi‐scale problem in the context of inelastic structural mechanics.
Abstract
Purpose
The purpose of this paper is to consider the computational tools for solving a strongly coupled multi‐scale problem in the context of inelastic structural mechanics.
Design/methodology/approach
In trying to maintain the highest level of generality, the finite element method is employed for representing the microstructure at this fine scale and computing the solution. The main focus of this work is the implementation procedure which crucially relies on a novel software product developed by the first author in terms of component template library (CTL).
Findings
The paper confirms that one can produce very powerful computational tools by software coupling technology described herein, which allows the class of complex problems one can successfully tackle nowadays to be extended significantly.
Originality/value
This paper elaborates upon a new multi‐scale solution strategy suitable for highly non‐linear inelastic problems.