Raed Salman Saeed Alhusseini, Ali Sadik Gafer Qanber, Bashar Dheyaa Hussein Al-Kasob, Manar Hamid Jasim and Mehdi Ranjbar
This paper aims to present the potential of using aligned single-layer graphene sheets to reinforce the methyl methacrylate cantilever beam in low-velocity impact problem.
Abstract
Purpose
This paper aims to present the potential of using aligned single-layer graphene sheets to reinforce the methyl methacrylate cantilever beam in low-velocity impact problem.
Design/methodology/approach
The Halpin–Tsai law is applied to compute the mechanical properties of isotropic polymer beam reinforced by aligned graphene sheet. Using both longitudinal and lateral displacements in composite beam, all components of the stress and strain fields are written. The equations of motion are derived by applying energy method, generalized Lagrange equations and Ritz method.
Findings
The analytical formulation accuracy is corroborated by comparing the present results with those available in the literature. Numerical examples indicate that the contact duration is decreased with increasing of graphene volume fraction, whereas the values of peak contact force, shear strain and shear stress at peak contact force tend to be vice versa. Also, among the results, shear stress at the peak contact force has the most effect with graphene volume fraction changes.
Originality/value
This research fulfils an identified need to investigate how graphene-reinforced beam behavior subjected to low-velocity impact can be enabled.
Details
Keywords
Ali Sadik Gafer Qanber, Raed Salman Saeed Alhusseini, Bashar Dheyaa Hussein Al-Kasob, Manar Hamid Jasim and Mehdi Ranjbar
The main objective of this article is to develop a theoretical formulation for predicting the response of CNTs reinforced beam under multiple impactors with general boundary…
Abstract
Purpose
The main objective of this article is to develop a theoretical formulation for predicting the response of CNTs reinforced beam under multiple impactors with general boundary conditions, using first-order shear deformation beam theory.
Design/methodology/approach
The rule of mixtures is implemented to derive the material properties of the beam. The nonlinear Hertz contact law is applied for simulation between impactors and the surface of the beam. A combination of approaches includes energy method, Ritz method and generalized Lagrange equations are used to extract the matrix form of equations of motion. The time-domain solution is obtained using implementing the well-known Runge Kutta 4th order method.
Findings
After examining the accuracy of the present method, the effects of the number of impactors include one impactor, and three impactors in various CNTs volume fraction are studied for CNTs reinforced beam with clamped-clamped, clamped-free and simply supported boundary conditions under the low-velocity impact. The most important finding of this article is that contact force and beam indentation at the middle of the beam in the case of one impactor are greater than those reported in the case of three impactors.
Originality/value
This article fulfills an identified need to study how CNTs reinforced beam behaviour with general boundary conditions under multiple low-velocity impacts can be enabled.