Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 6 November 2017

Rachna Sehrawat, Parmjit S. Panesar, Reeba Panesar and Anit Kumar

Biopigments, natural colors from microbiological origin are of great interest because of their potential advantages over synthetic colorants. Therefore, this paper aims to…

320

Abstract

Purpose

Biopigments, natural colors from microbiological origin are of great interest because of their potential advantages over synthetic colorants. Therefore, this paper aims to evaluate the best possible fermentative conditions for the maximum production of biopigment using solid state fermentation and submerged fermentation by Monascus purpureus MTCC 369.

Design/methodology/approach

The biopigment was produced using solid state fermentation and submerged with optimized substrate to achieve higher yield. The statistical analysis was carried out using a Microsoft Excel ® (Microsoft Corporation).

Findings

On comparative analysis, it was observed that solid state fermentation resulted significant accumulation of biopigment (9.0 CVU/g) on the 9th day in comparison to submerged fermentation (5.1 CVU/g) on the 15th day.

Practical implications

Results revealed that sweet potato peel powder and pea pods provides necessary nutrients required for mycelial growth, and biopigment production, therefore, can be used as potent substrate for biopigment production by Monascus purpureus MTCC 369. Extracted color can be used in confectionery, beverages and pharmaceutical industries.

Originality/value

This work focuses on utilisation of waste for production of pigment as alternative source to synthetic colorant, and few studies have been carried out using wastes, but no work has been carried out on sweet potato peel to the best of the authors’ knowledge.

Details

Pigment & Resin Technology, vol. 46 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 30 October 2018

Tanya L. Swer, Komal Chauhan, Prodyut K. Paul, C. Mukhim, Khalid Bashir and Rachna Sehrawat

An upsurge in health and environmental concerns over the use of synthetic color has made the development of color from cheap and easily available natural sources, namely, plants…

184

Abstract

Purpose

An upsurge in health and environmental concerns over the use of synthetic color has made the development of color from cheap and easily available natural sources, namely, plants, animals, micro-organisms and algae as indispensable. This study aims to extract anthocyanins, an important natural plant pigments, from Sohiong (Prunus nepalensis). This study demonstrated that Sohiong have high anthocyanins content and antioxidant property, indicating an immense potential for the fruit producers and food processors.

Design/methodology/approach

Response surface methodology was used to optimize the conditions for extraction of anthocyanins from Sohiong using conventional solvent extraction.

Findings

The optimum conditions for extraction were found to be 36.75°C temperature, 60.32 per cent ethanol concentration and 2.39 per cent citric acid concentration with recovery of 45 per cent total extract yield, 858.84 mg C3G/100g DM anthocyanin content and 824.91 mg GAE/100g DM phenolic content with in-vitro antioxidant activity of 31.40 mmol AEAC/100g DM for FRAP and 84.66 per cent DPPH scavenging capacity (20mg/ml). The F-values and high values of adjusted determination coefficient for each response imply high level of significance of the fitted models.

Practical implications

Extracted color can be used in food and pharmaceutical industries.

Social implications

Pigment extracted is from a natural source and possesses high antioxidative activity and potential health benefits. With increasing demand for natural colors and other additives, there is a wide range of applications of the pigment as natural colorant in the food and pharmaceutical sector.

Originality/value

Selected plant source, i.e. Sohiong, was not used earlier by any researcher to extract anthocyanins for potential applications as food colorant.

Details

Pigment & Resin Technology, vol. 47 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 3 January 2017

Rachna Sehrawat, Paramjit S. Panesar, Tanya L. Swer and Anit Kumar

This paper aims to extract colour from micro-organisms (as a source of natural pigments) using agro-industrial substrates to replace synthetic media by solid state fermentation…

210

Abstract

Purpose

This paper aims to extract colour from micro-organisms (as a source of natural pigments) using agro-industrial substrates to replace synthetic media by solid state fermentation. Nature is filled with colours. Due to health and environmental consciousness among people, use of synthetic colour has declined, and so the need to develop colour from cheap and easily available natural sources (plants, animals, micro-organisms and algae) using a cost-effective technique with higher yield and rapid growth. Monascus purpureus colour is a potent source of compounds (Dimerumic acid, Monacolin-k and -aminobutyric acid) having antimutagenic, antimicrobial and antiobesity, which helps in combating diseases.

Design/methodology/approach

Response surface methodology was used to optimise the biopigments extraction from Monascus purpureus using solid state fermentation.

Findings

The best optimised conditions for biopigments production using Monascus purpureus MTCC 369 were pH 5.4 at 32°C for 8 days 9 hours (8.9 days) from sweet potato peel and pea pod powder, 7.8 (w/w) and 3.9 per cent (w/w), respectively, which gave a final yield of 21 CVU/g. The model F-value of 69.18 and high value of adjusted determination coefficient 96.00 per cent implies high level of significance of the fitted model.

Practical implications

Extracted colour can be used in beverages, confectionery and pharmaceutical industries.

Social implications

Colour produced using Monascus purpureus MTCC 369 is a natural source. As consumers are reluctant to use synthetic colour because of the undesirable allergic reactions caused by them, so a biopigment produced is natural colouring compound with wide application in food sector.

Originality/value

Selected sources of carbon and nitrogen were not used earlier by any researcher to extract biopigment from Monascus purpureus MTCC 369.

Details

Pigment & Resin Technology, vol. 46 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 12 February 2018

Savita Rani, Rakhi Singh, Rachna Sehrawat, Barjinder Pal Kaur and Ashutosh Upadhyay

Pearl millet (Pennisetum glaucum) is a rich source of nutrients as compared to the major cultivated cereal crops. However, major factors which limit its utilization are the…

1399

Abstract

Purpose

Pearl millet (Pennisetum glaucum) is a rich source of nutrients as compared to the major cultivated cereal crops. However, major factors which limit its utilization are the presence of anti-nutritional factors (phytate, tannins and polyphenols) which lower availability of minerals and poor keeping quality because of higher lipase activity. Therefore, this paper aims to focus on the impact of different processing methods on the nutrient composition and anti-nutritional components of pearl millet.

Design/methodology/approach

This is a literature review study from 1983 to 2017, focusing on studies related to pearl millet processing and their effectiveness in the enrichment of nutritional value through reduction of anti-nutritional compounds.

Findings

From the literature reviewed, pearl millet processing through various methods including milling, malting, fermentation, blanching and acid as well as heat treatments were found to be effective in achieving the higher mineral digestibility, retardation of off flavor, bitterness as well as rancidity problems found during storage of flour.

Originality/value

Through this review paper, possible processing methods and their impact on the nutrient and anti-nutrient profile of pearl millet are discussed after detailed studied of literature from journal articles and thesis.

Details

Nutrition & Food Science, vol. 48 no. 1
Type: Research Article
ISSN: 0034-6659

Keywords

1 – 4 of 4
Per page
102050