ROGER N. CONWAY and RON C. MITTELHAMMER
In the last two decades there has been considerable progress made in the development of alternative estimation techniques to ordinary least squares (OLS) regression. The search…
Abstract
In the last two decades there has been considerable progress made in the development of alternative estimation techniques to ordinary least squares (OLS) regression. The search for alternative estimators has no doubt been motivated by the observance of erratic OLS estimator behavior in cases where there are too few observations, multicollinearity problems, or simply “information‐poor” data sets. Imprecise and unreliable OLS coefficient estimates have been the result.
George G. Judge and Ron C. Mittelhammer
In the context of competing theoretical economic–econometric models and corresponding estimators, we demonstrate a semiparametric combining estimator that, under quadratic loss…
Abstract
In the context of competing theoretical economic–econometric models and corresponding estimators, we demonstrate a semiparametric combining estimator that, under quadratic loss, has superior risk performance. The method eliminates the need for pretesting to decide between members of the relevant family of econometric models and demonstrates, under quadratic loss, the nonoptimality of the conventional pretest estimator. First-order asymptotic properties of the combined estimator are demonstrated. A sampling study is used to illustrate finite sample performance over a range of econometric model sampling designs that includes performance relative to a Hausman-type model selection pretest estimator. An important empirical problem from the causal effects literature is analyzed to indicate the applicability and econometric implications of the methodology. This combining estimation and inference framework can be extended to a range of models and corresponding estimators. The combining estimator is novel in that it provides directly minimum quadratic loss solutions.
Details
Keywords
George G. Judge and Ron C. Mittelhammer
In the context of competing IV econometric models and estimators, we demonstrate a semiparametric Stein-like estimator (SSLE) that, under quadratic loss, has superior risk…
Abstract
In the context of competing IV econometric models and estimators, we demonstrate a semiparametric Stein-like estimator (SSLE) that, under quadratic loss, has superior risk performance. The method eliminates the need for pretesting to decide whether covariate endogeneity is present and makes use of a pretest estimator choice between IV and non-IV methods unnecessary. A sampling study is used to illustrate finite sample performance over a range of sampling designs, including its performance relative to pretest estimators. An important applied problem from the literature is analyzed to indicate possible applied implications and the relation of SSLE to other modern IV estimators.
Details
Keywords
Thomas L. Marsh and Ron C. Mittelhammer
We formulate generalized maximum entropy estimators for the general linear model and the censored regression model when there is first order spatial autoregression in the…
Abstract
We formulate generalized maximum entropy estimators for the general linear model and the censored regression model when there is first order spatial autoregression in the dependent variable. Monte Carlo experiments are provided to compare the performance of spatial entropy estimators relative to classical estimators. Finally, the estimators are applied to an illustrative model allocating agricultural disaster payments.
Asli Ogunc and Randall C. Campbell
Advances in Econometrics is a series of research volumes first published in 1982 by JAI Press. The authors present an update to the history of the Advances in Econometrics series…
Abstract
Advances in Econometrics is a series of research volumes first published in 1982 by JAI Press. The authors present an update to the history of the Advances in Econometrics series. The initial history, published in 2012 for the 30th Anniversary Volume, describes key events in the history of the series and provides information about key authors and contributors to Advances in Econometrics. The authors update the original history and discuss significant changes that have occurred since 2012. These changes include the addition of five new Senior Co-Editors, seven new AIE Fellows, an expansion of the AIE conferences throughout the United States and abroad, and the increase in the number of citations for the series from 7,473 in 2012 to over 25,000 by 2022.
Details
Keywords
Dek Terrell and Daniel Millimet
The collection of chapters in this 30th volume of Advances in Econometrics provides a well-deserved tribute to Thomas B. Fomby and R. Carter Hill, who have served as editors of…
Abstract
The collection of chapters in this 30th volume of Advances in Econometrics provides a well-deserved tribute to Thomas B. Fomby and R. Carter Hill, who have served as editors of the Advances in Econometrics series for 25 and 21 years, respectively. Volume 30 contains a more varied collection of chapters than previous volumes, in essence mirroring the wide variety of econometric topics covered by the series over 30 years. Volume 30 starts with a chapter discussing the history of this series over the last 30 years. The next five chapters can be broadly categorized as focusing on model specification and testing. Following this section are three contributions that examine instrumental variables models in quite different settings. The next four chapters focus on applied macroeconomics topics. The final chapter offers a practical guide to conducting Monte Carlo simulations.