Describes a company‐based PhD project into the use of automatedguided vehicles in a small‐batch manufacturing environment. The projectled to a balanced‐cell methodology to…
Abstract
Describes a company‐based PhD project into the use of automated guided vehicles in a small‐batch manufacturing environment. The project led to a balanced‐cell methodology to facilitate the use of guided vehicles in a difficult environment. The methodology itself was found to provide benefits for material flow. Having formulated the above approach, a theoretical model is presented, analysing the operational effects of improved workflow. The above theoretical analysis showed the potential benefits of balanced cells on the factory floor, and these were confirmed by a simulation study. This being so, a DCF analysis showed that balanced cells enabled the economic use of guided vehicle systems in multi‐product batch manufacture, by transforming an AGV project from a negative to a positive net present value. An analysis of the wider effects of cellular manufacture enabled the value of the investment to be increased.
Details
Keywords
Jody Clarke-Midura, Victor R. Lee, Jessica F. Shumway and Megan M. Hamilton
This paper aims to be a think piece that promotes discussion around the design of coding toys for children. In particular, the authors examine three different toys that have some…
Abstract
Purpose
This paper aims to be a think piece that promotes discussion around the design of coding toys for children. In particular, the authors examine three different toys that have some sort of block-based coding interface. The authors juxtapose three different design features and the demands they place on young children learning to code. To examine the toys, the authors apply a framework developed based on Gibson’s theory of affordances and Palmer’s external representations. The authors look specifically at the toys: interface design, intended play scenario and representational conventions for computational ideas.
Design/methodology/approach
As a research team, the authors have been playing with toys, observing their own children play with the toys and using them in kindergarten classrooms. In this paper, the authors reflect specifically on the design of the toys and the demands they place on children.
Findings
The authors make no claims about whether one toy/design approach is superior to another. However, the differences that the authors articulate should serve as a provocation for researchers and designers to be mindful about what demands and expectations they place on young children as they learn to code and use code to learn in any given system.
Research limitations/implications
As mentioned above, the authors want to start a discussion about design of these toys and how they shape children's experience with coding.
Originality/value
There is a push to get coding and computational thinking into K-12, but there is not enough research on what this looks like in early childhood. Further, while research is starting to emerge on block-based programming vs text-based for older children and adults, little research has been done on the representational form of code for young children. The authors hope to start a discussion on design of coding toys for children.
Details
Keywords
Deborah Silvis, Victor R. Lee, Jody Clarke-Midura and Jessica F. Shumway
Much remains unknown about how young children orient to computational objects and how we as learning scientists can orient to young children as computational thinkers. While some…
Abstract
Purpose
Much remains unknown about how young children orient to computational objects and how we as learning scientists can orient to young children as computational thinkers. While some research exists on how children learn programming, very little has been written about how they learn the technical skills needed to operate technologies or to fix breakdowns that occur in the code or the machine. The purpose of this study is to explore how children perform technical knowledge in tangible programming environments.
Design/methodology/approach
The current study examines the organization of young children’s technical knowledge in the context of a design-based study of Kindergarteners learning to code using robot coding toys, where groups of children collaboratively debugged programs. The authors conducted iterative rounds of qualitative coding of video recordings in kindergarten classrooms and interaction analysis of children using coding robots.
Findings
The authors found that as children repaired bugs at the level of the program and at the level of the physical apparatus, they were performing essential technical knowledge; the authors focus on how demonstrating technical knowledge was organized pedagogically and collectively achieved.
Originality/value
Drawing broadly from studies of the social organization of technical work in professional settings, we argue that technical knowledge is easy to overlook but essential for learning to repair programs. The authors suggest how tangible programming environments represent pedagogically important contexts for dis-embedding young children’s essential technical knowledge from the more abstract knowledge of programming.
Details
Keywords
Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…
Abstract
Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.
Details
Keywords
Noel Scott, Brent Moyle, Ana Cláudia Campos, Liubov Skavronskaya and Biqiang Liu
This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…
Abstract
This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.
Details
Keywords
Smart card-based E-payment systems are receiving increasing attention as the number of implementations is witnessed on the rise globally. Understanding of user adoption behavior…
Abstract
Smart card-based E-payment systems are receiving increasing attention as the number of implementations is witnessed on the rise globally. Understanding of user adoption behavior of E-payment systems that employ smart card technology becomes a research area that is of particular value and interest to both IS researchers and professionals. However, research interest focuses mostly on why a smart card-based E-payment system results in a failure or how the system could have grown into a success. This signals the fact that researchers have not had much opportunity to critically review a smart card-based E-payment system that has gained wide support and overcome the hurdle of critical mass adoption. The Octopus in Hong Kong has provided a rare opportunity for investigating smart card-based E-payment system because of its unprecedented success. This research seeks to thoroughly analyze the Octopus from technology adoption behavior perspectives.
Cultural impacts on adoption behavior are one of the key areas that this research posits to investigate. Since the present research is conducted in Hong Kong where a majority of population is Chinese ethnicity and yet is westernized in a number of aspects, assuming that users in Hong Kong are characterized by eastern or western culture is less useful. Explicit cultural characteristics at individual level are tapped into here instead of applying generalization of cultural beliefs to users to more accurately reflect cultural bias. In this vein, the technology acceptance model (TAM) is adapted, extended, and tested for its applicability cross-culturally in Hong Kong on the Octopus. Four cultural dimensions developed by Hofstede are included in this study, namely uncertainty avoidance, masculinity, individualism, and Confucian Dynamism (long-term orientation), to explore their influence on usage behavior through the mediation of perceived usefulness.
TAM is also integrated with the innovation diffusion theory (IDT) to borrow two constructs in relation to innovative characteristics, namely relative advantage and compatibility, in order to enhance the explanatory power of the proposed research model. Besides, the normative accountability of the research model is strengthened by embracing two social influences, namely subjective norm and image. As the last antecedent to perceived usefulness, prior experience serves to bring in the time variation factor to allow level of prior experience to exert both direct and moderating effects on perceived usefulness.
The resulting research model is analyzed by partial least squares (PLS)-based Structural Equation Modeling (SEM) approach. The research findings reveal that all cultural dimensions demonstrate direct effect on perceived usefulness though the influence of uncertainty avoidance is found marginally significant. Other constructs on innovative characteristics and social influences are validated to be significant as hypothesized. Prior experience does indeed significantly moderate the two influences that perceived usefulness receives from relative advantage and compatibility, respectively. The research model has demonstrated convincing explanatory power and so may be employed for further studies in other contexts. In particular, cultural effects play a key role in contributing to the uniqueness of the model, enabling it to be an effective tool to help critically understand increasingly internationalized IS system development and implementation efforts. This research also suggests several practical implications in view of the findings that could better inform managerial decisions for designing, implementing, or promoting smart card-based E-payment system.
Details
Keywords
This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…
Abstract
This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.