Search results
1 – 10 of over 28000Yu Song, Bingrui Liu, Lejia Li and Jia Liu
In recent years, terrorist attacks have gradually become one of the important factors endangering social security. In this context, this research aims to propose methods and…
Abstract
Purpose
In recent years, terrorist attacks have gradually become one of the important factors endangering social security. In this context, this research aims to propose methods and principles which can be utilized to make effective evacuation plans to reduce casualties in terrorist attacks.
Design/methodology/approach
By analyzing the statistical data of terrorist attack videos, this paper proposes an extended cellular automaton (CA) model and simulates the panic evacuation of the pedestrians in the terrorist attack.
Findings
The main findings are as follows. (1) The panic movement of pedestrians leads to the dispersal of the crowd and the increase in evacuation time. (2) Most deaths occur in the early stage of crowd evacuation while pedestrians gather without perceiving the risk. (3) There is a trade-off between escaping from the room and avoidance of attackers for pedestrians. Appropriate panic contagion enables pedestrians to respond more quickly to risks. (4) Casualties are mainly concentrated in complex terrains, e.g. walls, corners, obstacles, exits, etc. (5) The initial position of the attackers has a significant effect on the crowd evacuation. The evacuation efficiency should be reduced if the attacker starts the attack from the exit or corners.
Originality/value
In this research, the concept of “focus region” is proposed to depict the different reactions of pedestrians to danger and the effects of the attacker’s motion (especially the attack strategies of attackers) are classified. Additionally, the influences on pedestrians by direct and indirect panic sources are studied.
Details
Keywords
Abstract
Purpose
The purpose of this is to study the effects of organic sealing on the structure and performance of the micro-arc oxidation (MAO) film of 7075 aluminum alloy.
Design/methodology/approach
The 7075 aluminum alloy was treated by micro-arc oxidation technology, then the MAO films were sealed by polyvinylidene fluoride (PVDF) solutions with different concentrations to forms a MAO/PVDF composite coating on the surface of the 7075 aluminum alloy matrix.
Findings
The results show that the MAO/PVDF film thickness increased to 24.8 um. When the PVDF concentration was 8 g/L, and the sealed film reached best corrosion resistance and wear resistance.
Originality/value
The effects of different concentrations of PVDF on microarc oxidation properties of 7075 aluminum alloy were studied.
Details
Keywords
It is desired to provide a diversified iterative scheme for solving the constrained solutions of the generalized coupled discrete-time periodic (GCDTP) matrix equations from the…
Abstract
Purpose
It is desired to provide a diversified iterative scheme for solving the constrained solutions of the generalized coupled discrete-time periodic (GCDTP) matrix equations from the perspective of optimization.
Design/methodology/approach
The paper considers generalized reflexive solutions of the GCDTP matrix equations by applying the Jacobi gradient-based iterative (JGI) algorithm, which is an extended variant of the gradient-based iterative (GI) algorithm.
Findings
Through numerical simulation, it is verified that the efficiency and accuracy of the JGI algorithm are better than some existing algorithms, such as the GI algorithm in Hajarian, the RGI algorithm in Sheng and the AGI algorithm in Xie and Ma.
Originality/value
It is the first instance in which the GCDTP matrix equations are solved applying the JGI algorithm.
Details
Keywords
Abstract
Purpose
This paper aims to study the effect of Micro-arc oxidation (MAO) coating on stress corrosion and electrochemical behavior of aluminum alloy.
Design/methodology/approach
The stress corrosion cracking behavior of 7050 aluminum alloy (AA7050) after MAO treatment was investigated in 3.5 Wt.% NaCl solution using the constant load ring. Electrochemical impedance spectroscopy (EIS) was used to evaluate the change of corrosion resistance of MAO specimens in 3.5 Wt.% NaCl solution, and appropriate equivalent circuits were established.
Findings
The results demonstrated that the MAO coating can improve the corrosion resistance of the AA7050 and avoid the reduction of mechanical properties caused by corrosion. In the initial stage of corrosion, the corrosion resistance of coated specimen decreased at first and then increased. In the middle and final stage of corrosion, the corrosion resistance of coated specimen decreased at first and then stabilized.
Originality/value
The long-term corrosion behavior of MAO specimens under stress was studied by constant load experiment and EIS. It has guiding significance for the application of MAO technology on aluminum alloy.
Details
Keywords
Abstract
Purpose
This study aims to study the formation mechanism of micro-arc oxidation (MAO) coating on AZ31 magnesium alloy and how the annealing process affects its corrosion resistance.
Design/methodology/approach
This study involved immersion experiments, electrochemical experiments and slow strain rate tensile experiments, along with scanning electron microscopy, optical microscopy observation and X-ray diffraction analysis.
Findings
The findings suggest that annealing treatment can refine the grain size of AZ31 magnesium alloy to an average of 6.9 µm at 300°C. The change in grain size leads to a change in conductivity, which affects the performance of MAO coatings. The MAO coating obtained by annealing the substrate at 300°C has smaller pores and porosity, resulting in better adhesion and wear resistance.
Originality/value
The coating acts as a barrier to prevent corrosive substances from entering the substrate. However, the smaller pores and porosity reduce the channels for the corrosive solution to pass through the coating. When the coating cracks or falls off, the corrosive medium and substrate come into direct contact. Smaller and uniform grains have better corrosion resistance.
Details
Keywords
Abstract
Purpose
This paper aims to investigate the effects of different electrolyte systems on the properties of micro-arc oxidation coating on 7050 high strength aluminum alloy.
Design/methodology/approach
The coatings were prepared in silicate system with Na2SiO3 as main component, borate system with Na2B4O7 as main component and aluminate solution with Na2AlO2 as main salt, respectively.
Findings
The results show that the 7050 high strength aluminum alloy shows the best properties in silicate system.
Originality/value
This manuscript studied the crucial influence of different electrolyte systems on the microstructure and properties of the aluminum alloy micro-arc oxidation layer.
Details
Keywords
Song Tang, Xiaowen Chen, Defen Zhang, Wanlin Xie, Qingzheng Ran, Bin Luo, Han Luo and Junwei Yang
The purpose of this study is to investigate the influence of varying concentrations of nano-SiO2 particle doping on the structure and properties of the micro-arc oxidation (MAO…
Abstract
Purpose
The purpose of this study is to investigate the influence of varying concentrations of nano-SiO2 particle doping on the structure and properties of the micro-arc oxidation (MAO) coating of 7075 aluminum alloy. This research aims to provide novel insights and methodologies for the surface treatment and protection of 7075 aluminum alloy.
Design/methodology/approach
The surface morphology of the MAO coating was characterized using scanning electron microscope. Energy spectrometer was used to characterize the elemental content and distribution on the surface and cross section of the MAO coating. The phase composition of the MAO coating was characterized using X-ray diffractometer. The corrosion resistance of the MAO coating was characterized using an electrochemical workstation.
Findings
The results showed that when the addition of nano-SiO2 particles is 3 g/L, the corrosion resistance is optimal.
Originality/value
This study investigated the influence of different concentrations of nano-SiO2 particles on the structure and properties of the MAO coating of 7075 aluminum alloy.
Details
Keywords
Yun Su, Miao Tian, Yunyi Wang, Xianghui Zhang and Jun Li
The purpose of this paper is to study heat and steam transfer in a vertical air gap and improve thermal protective performance of protective clothing under thermal radiation and…
Abstract
Purpose
The purpose of this paper is to study heat and steam transfer in a vertical air gap and improve thermal protective performance of protective clothing under thermal radiation and hot steam.
Design/methodology/approach
An experiment-based model was introduced to analyze heat and moisture transfer in the vertical air gap between the protective clothing and human body. A developed test apparatus was used to simulate different air gap sizes (3, 6, 9, 12, 15, 18, 21 and 24 mm). The protective clothing with different air gap sizes was subjected to dry and wet heat exposures.
Findings
The increase of the air gap size reduced the heat and moisture transfer from the protective clothing to the skin surface under both heat exposures. The minimum air gap size for the initiation of natural convection in the dry heat exposure was between 6 and 9 mm, while the air gap size for the occurrence of natural convection was increased in the wet heat exposure. In addition, the steam mass flux presented a sharp decrease with the rising of the air gap size, followed by a stable state, mainly depending on the molecular diffusion and the convection mass transfer.
Originality/value
This research provides a better understanding of the optimum air gap under the protective clothing, which contributes to the design of optimum air gap size that provided higher thermal protection against dry and wet heat exposures.
Details
Keywords
Meng Deng, Yunyi Wang and Peijing Li
The purpose of this paper is to provide the details of developments to research works in the distribution characteristics of the air gaps within firefighters’ clothing and…
Abstract
Purpose
The purpose of this paper is to provide the details of developments to research works in the distribution characteristics of the air gaps within firefighters’ clothing and research methods to evaluate the effect of air gaps on the thermal protective performance of firefighters’ clothing.
Design/methodology/approach
In this paper, the distribution of air gaps within firefighters’ clothing was first analyzed, and the air gaps characteristics were summarized as thickness, location, heterogeneity, orientation and dynamics. Then, the evaluation of the air gap on the thermal protective performance of fighters’ clothing was reviewed for both experimental and numerical studies.
Findings
The air gaps within clothing layers and between clothing and skin play an important role in determining the thermal protective performance of firefighters’ protective clothing. It is obvious that research works on the effects of actual air gaps entrapped in firefighters’ clothing on thermal protection are comparatively few in number, primarily focusing on static and uniform air gaps at the fabric level. Further studies should be conducted to define the characteristic of air gap, deepen the understand of mechanism of heat transfer and numerically simulate the 3D dynamic heat transfer in clothing to improve the evaluation of thermal protective performance provided by the firefighters’ clothing.
Practical implications
Air gaps within thermal protective clothing play a crucial role in the protective performance of clothing and provide an efficient way to provide fire-fighting occupational safety. To accurately characterize the distribution of air gaps in firefighters’ clothing under high heat exposure, the paper will provide guidelines for clothing engineers to design clothing for fighters and optimize the clothing performance.
Originality/value
This paper is offered as a concise reference for researchers’ further research in the area of the effect of air gaps within firefighters’ clothing under thermal exposure.
Details
Keywords
Abstract
Purpose
This paper aims to verify the inhibition of the hydrogen permeation effect of the coating and to quantitatively and qualitatively characterize the coating-induced stress.
Design/methodology/approach
By means of slow strain rate tensile testing (SSRT) in humid air, thickness measurement, fracture morphology, cross-section morphology and surface morphology, hydrogen content measurements, flow stress difference method.
Findings
The results demonstrate that the mechanism of the inhibition of hydrogen embrittlement by the coating is mainly attributed to the repression of hydrogen permeation and the additional coating-induced compressive stress.
Originality/value
It is proven that the micro-arc oxidation (MAO) coating does inhibit hydrogen entry into the alloy, and the stress induced by the MAO coating is compressive stress, which can restrain the hydrogen embrittlement of the alloy. Therefore, the mechanism of the inhibition of hydrogen embrittlement is dominated by the mechanisms of both hydrogen permeation inhibition and coating-induced stress.
Details