Search results

1 – 2 of 2
Article
Publication date: 1 January 1987

R.F. Sandenbergh

The stress corrosion properties of 3CR12 were evaluated in various media by means of potentiodynamic scanning and the slow strain rate techniques. In general 3CR12 shows good…

Abstract

The stress corrosion properties of 3CR12 were evaluated in various media by means of potentiodynamic scanning and the slow strain rate techniques. In general 3CR12 shows good resistance to stress corrosion except in hot chloride solutions above 100°C.

Details

Anti-Corrosion Methods and Materials, vol. 34 no. 1
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 9 April 2021

Hongda Deng, Yongliang Liu, Zhen He, Xiantao Gou, Yefan Sheng, Long Chen and Jianbing Ren

The purpose of this paper is to investigate and explain thermal oxide effect on electrochemical corrosion resistance anodized stainless steel (SS).

Abstract

Purpose

The purpose of this paper is to investigate and explain thermal oxide effect on electrochemical corrosion resistance anodized stainless steel (SS).

Design/methodology/approach

Electrochemical corrosion resistance of thermal oxides produced on anodized 304 SS in air at 350°C, 550°C, 750°C and 950°C in 3.5 wt.% NaCl solution have been investigated by dynamic potential polarization, EIS and double-loop dynamic polarization. Anodized 304 SS were obtained by anodization at the constant density of 1.4 mA.cm-2 in the solution containing 28.0 g.L-1H3PO4, 20.0 g.L-1C6H8O7, 200.0 g.L-1H2O2 at 70°C for 50 min. SEM and EDS had been also used to characterize the thermal oxides and passive oxide.

Findings

Interestingly, anodized 304SS with thermal oxide produced at 350°C displayed more electrochemical corrosion and pitting resistance than anodized 304 SS only with passive oxide, as related to the formation of oxide film with higher chromium to iron ratio. Whereas, anodized 304SS with thermal oxide formed at 950°C shows the worse electrochemical corrosion and pitting resistance among those formed at the high temperatures due to thermal oxide with least compact.

Originality/value

When thermally oxidized in the range of 350°C–950°C, electrochemical corrosion and pitting corrosion resistance of anodized 304 SS decrease with the increase of temperature due to less compactness, more defects of thermal oxide.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 2 of 2