This paper aims to clarify some aspects of the application of the Godunov method for the Baer–Nunziato equations solution on the example of the problem of shock wave – dense…
Abstract
Purpose
This paper aims to clarify some aspects of the application of the Godunov method for the Baer–Nunziato equations solution on the example of the problem of shock wave – dense particles cloud interaction.
Design/methodology/approach
The statement of the problem corresponds to the natural experiment. Mathematical model is based on the Baer–Nunziato system of equations with algebraic right-hand side source terms that takes into account the interphase friction force. Two numerical approaches are used: Harten-Lax-van Leer method and Godunov method.
Findings
For the robust simulation using Godunov method, the application of the pressure relaxation procedure is proposed. The comparative analysis of the simulation results using two methods is carried out. The Godunov method provides significantly smaller numerical diffusion of the solid phase volume fraction in the cloud that leads to the much better agreement of the pressure curves on transducers and the dynamics of the cloud motion with the experimental data.
Originality/value
Godunov method for the Baer–Nunziato equations is applied for the simulation of the natural experiment on the shock wave particles cloud interaction. Up to now, the examples of the application of the Godunov method for the Baer–Nunziato equations to the investigation of the practical problems have been limited by the works of the authors of the method and the field of detonation in the heterogeneous explosives. For the robust simulations in the presence of interphase boundaries, it is proposed to use the Godunov method together with the pressure relaxation procedure.
Details
Keywords
E. Daniel, R. Saurel, M. Larini and J.C. Loraud
This paper investigates the multi‐phase behaviour of dropletsinjected into a nozzle at two separate wall locations. The physical featuresof the droplets (rate of mass, density and…
Abstract
This paper investigates the multi‐phase behaviour of droplets injected into a nozzle at two separate wall locations. The physical features of the droplets (rate of mass, density and radius) at each injector location are identical. This system can be described by a two‐phase Eulerian—Eulerian approach that yields classical systems of equations: three for the gaseous phase and three for the dispersed droplet phase. An underlying assumption in the two phase model is that no interaction occurs between droplets. The numerical solution of the model (using the MacCormack scheme) indicates however that the opposite jets do interact to form one jet. This inconsistency is overcome in the current paper by associating the droplets from a given injection location with a separate phase and subsequently solving equations describing a multiphase system (here, three‐phase system). Comparison of numerical predications between the two‐phase and the multiphase model shows significantly different results. In particular the multiphase model shows no jet interaction.
Details
Keywords
L. Allançon, B. Porterie, R. Saurel and J.C. Loraud
A numerical analysis is given for the prediction of unsteady,two‐dimensional fluid flow induced by a heat and mass source in aninitially closed cavity which is vented when the…
Abstract
A numerical analysis is given for the prediction of unsteady, two‐dimensional fluid flow induced by a heat and mass source in an initially closed cavity which is vented when the internal overpressure reaches a certain level. A modified ICE technique is used for solving the Navier–Stokes equations governing a compressible flow at a low Mach number and high temperature. Particular attention is focused on the treatment of the boundary conditions on the vent surface. This has been treated by an original procedure using the resolution of a Riemann problem. The configuration investigated may be viewed as a test problem which allows simulation of the ventilation and cooling of such cavities. The injection of hot gases is found to play a key role on the temperature field in the enclosure, whereas the vent seems to produce a distortion of the dynamic flow‐field only. When the injection of hot gases is stopped, the enclosure heat transfer is strongly influenced by the vent. A comparison with the results obtained when the radiative heat transfer between the walls of the enclosure is considered, indicate that radiation dominates the heat transfer in the enclosure and alters the flow patterns significantly.
Details
Keywords
Eric Goncalves Da Silva and Philippe Parnaudeau
The purpose of this paper is to quantify the relative importance of the multiphase model for the simulation of a gas bubble impacted by a normal…
Abstract
Purpose
The purpose of this paper is to quantify the relative importance of the multiphase model for the simulation of a gas bubble impacted by a normal shock wave in water. Both the free-field case and the collapse near a wall are investigated. Simulations are performed on both two- and three-dimensional configurations. The main phenomena involved in the bubble collapse are illustrated. A focus on the maximum pressure reached during the collapse is proposed.
Design/methodology/approach
Simulations are performed using an inviscid compressible homogeneous solver based on different systems of equations. It consists in solving different mixture or phasic conservation laws and a transport-equation for the gas volume fraction. Three-dimensional configurations are considered for which an efficient massively parallel strategy was developed. The code is based on a finite volume discretization for which numerical fluxes are computed with a Harten, Lax, Van Leer, Contact (HLLC) scheme.
Findings
The comparison of three multiphase models is proposed. It is shown that a simple four-equation model is well-suited to simulate such strong shock-bubble interaction. The three-dimensional collapse near a wall is investigated. It is shown that the intensity of pressure peaks on the wall is drastically increased (more than 200 per cent) in comparison with the cylindrical case.
Research limitations/implications
The study of bubble collapse is a key point to understand the physical mechanism involved in cavitation erosion. The bubble collapse close to the wall has been addressed as the fundamental mechanism producing damage. Its general behavior is characterized by the formation of a water jet that penetrates through the bubble and the generation of a blast wave during the induced collapse. Both the jet and the blast wave are possible damaging mechanisms. However, the high-speed dynamics, the small spatio-temporal scales and the complicated physics involved in these processes make any theoretical and experimental approach a challenge.
Practical implications
Cavitation erosion is a major problem for hydraulic and marine applications. It is a limiting point for the conception and design of such components.
Originality/value
Such a comparison of multiphase models in the case of a strong shock-induced bubble collapse is clearly original. Usually models are tested separately leading to a large dispersion of results. Moreover, simulations of a three-dimensional bubble collapse are scarce in the literature using such fine grids.
Details
Keywords
The aim of this work is to quantify the relative importance of the turbulence modelling for cavitating flows in thermal regime. A comparison of various transport-equation…
Abstract
Purpose
The aim of this work is to quantify the relative importance of the turbulence modelling for cavitating flows in thermal regime. A comparison of various transport-equation turbulence models and a study of the influence of the turbulent Prandtl number appearing in the formulation of the turbulent heat flux are proposed. Numerical simulations are performed on a cavitating Venturi flow for which the running fluid is freon R-114 and results are compared with experimental data.
Design/methodology/approach
A compressible, two-phase, one-fluid Navier–Stokes solver has been developed to investigate the behaviour of cavitation models including thermodynamic effects. The code is composed by three conservation laws for mixture variables (mass, momentum and total energy) and a supplementary transport equation for the volume fraction of gas. The mass transfer between phases is closed assuming its proportionality to the mixture velocity divergence.
Findings
The influence of turbulence model as regard to the cooling effect due to the vaporization is weak. Only the k – ε Jones–Launder model under-estimates the temperature drop. The amplitude of the wall temperature drop near the Venturi throat increases with the augmentation of the turbulent Prandtl number.
Originality/value
The interaction between Reynolds-averaged Navier–Stokes turbulence closure and non-isothermal phase transition is rarely studied. It is the first time such a study on the turbulent Prandtl number effect is reported in cavitating flows.
Details
Keywords
Dia Zeidan and Abdelmjid Qadi El Idrissi
This study aims to propose a robust total variation diminishing (TVD) weighted average flux (WAF) finite volume scheme for investigating compressible gas–liquid mixture flows.
Abstract
Purpose
This study aims to propose a robust total variation diminishing (TVD) weighted average flux (WAF) finite volume scheme for investigating compressible gas–liquid mixture flows.
Design/methodology/approach
This study considers a two-phase flow composed of a liquid containing dispersed gas bubbles. To model this two-phase mixture, this paper uses a homogeneous equilibrium model (HEM) defined by two mass conservation laws for the two phases and a momentum conservation equation for the mixture. It is assumed that the velocity is the same for the two phases, and the density of phases is governed by barotropic laws. By applying the theory of hyperbolic equations, this study establishes an exact solution of the Riemann problem associated with the model equations, which allows to construct an exact Riemann solver within the first-order upwind Godunov scheme as well as a robust TVD WAF scheme.
Findings
The ability and robustness of the proposed TVD WAF scheme is validated by testing several two-phase flow problems involving different wave structures of the Riemann problem. Simulation results are compared against analytical solutions and other available numerical methods as well as experimental data in the literature. The proposed approach is much superior to other strategies in terms of the accuracy and ability of reconstruction.
Originality/value
The novelty of this work lies in its methodical extension of a TVD WAF scheme implementing an exact Riemann solver developed for compressible two-phase flows. Furthermore, other novelty lies on the quantitative calculation of different Riemann problem two-phase flows. Simulation results involve the verification of the constructed methods on the exact solutions of HEM without any restriction of variables.
Details
Keywords
Rainald Löhner, Lingquan Li, Orlando Antonio Soto and Joseph David Baum
This study aims to evaluate blast loads on and the response of submerged structures.
Abstract
Purpose
This study aims to evaluate blast loads on and the response of submerged structures.
Design/methodology/approach
An arbitrary Lagrangian–Eulerian method is developed to model fluid–structure interaction (FSI) problems of close-in underwater explosions (UNDEX). The “fluid” part provides the loads for the structure considers air, water and high explosive materials. The spatial discretization for the fluid domain is performed with a second-order vertex-based finite volume scheme with a tangent of hyperbola interface capturing technique. The temporal discretization is based on explicit Runge–Kutta methods. The structure is described by a large-deformation Lagrangian formulation and discretized via finite elements. First, one-dimensional test cases are given to show that the numerical method is free of mesh movement effects. Thereafter, three-dimensional FSI problems of close-in UNDEX are studied. Finally, the computation of UNDEX near a ship compartment is performed.
Findings
The difference in the flow mechanisms between rigid targets and deforming targets is quantified and evaluated.
Research limitations/implications
Cavitation is modeled only approximately and may require further refinement/modeling.
Practical implications
The results demonstrate that the proposed numerical method is accurate, robust and versatile for practical use.
Social implications
Better design of naval infrastructure [such as bridges, ports, etc.].
Originality/value
To the best of the authors’ knowledge, this study has been conducted for the first time.
Details
Keywords
Ying Chen, Chuanjing Lu, Xin Chen, Jie Li and Zhaoxin Gong
Ultrahigh-speed projectile running in water with the velocity close to the speed of sound usually causes large supercavity. The computation of such transonic cavitating flows is…
Abstract
Purpose
Ultrahigh-speed projectile running in water with the velocity close to the speed of sound usually causes large supercavity. The computation of such transonic cavitating flows is usually difficult, thus high-speed model reflecting the compressibility of both the liquid and the vapor phases should be introduced to model such flow. The purpose of this paper is to achieve a model within an in-house developed solver to simulate the ultrahigh-speed subsonic supercavitating flows.
Design/methodology/approach
An improved TAIT equation adjusted by local temperature is adopted as the equation of state (EOS) for the liquid phase, and the Peng-Robinson EOS is used for the vapor phase. An all-speed variable coupling algorithm is used to unify the computations and regulate the convergence at arbitrary Mach number. The ultrahigh-speed (Ma=0.7) supercavitating flows around circular disk are investigated in contrast with the case of low subsonic (Ma=0.007) flow.
Findings
The characteristic physical variables are reasonably predicted, and the cavity profiles are compared to be close to the experimental empirical formula. An important conclusion in the compressible cavitating flow theory is verified by the numerical result that, at any specific cavitation number the cavity’s size and the drag coefficient both increase along with the rise of Mach number. On the contrary, it is found as well that the cavity’s slenderness ratio decreases when Mach number goes up. It indicates that the compressibility has different influences on the length and the radius of the supercavity.
Originality/value
A high-speed model reflecting the compressibility of both the liquid and the vapor phases was suggested to model the ultrahigh-speed supercavitating flows around underwater projectiles.
Details
Keywords
J.G. Zheng, T.S. Lee and S.H. Winoto
The aim of the study is to present a piecewise parabolic method (PPM) for numerical simulation of barotropic and nonbarotropic two‐fluid flows in more than one space dimension.
Abstract
Purpose
The aim of the study is to present a piecewise parabolic method (PPM) for numerical simulation of barotropic and nonbarotropic two‐fluid flows in more than one space dimension.
Design/methodology/approach
In transition layers of two components, a fluid mixture model system is introduced. Besides, conserving the mass, momentum and energy for the mixture, the model is supplemented with an advection equation for the volume fraction of one of the two fluid components to recover the pressure and track interfaces. The Tait and stiffened gas equations of state are used to describe thermodynamic properties of the barotropic and nonbarotropic components, respectively. To close the model system, a mixture equation of state is derived. The classical third‐order PPM is extended to the two‐fluid case and used to solve the model system.
Findings
The feasibility of this method has been demonstrated by good results of sample applications. Each of the material interfaces is resolved with two grid cells and there is no any pressure oscillation on the interfaces.
Research limitations/implications
With the mixture model system, there may be energy gain or loss for the nonbarotropic component on the material interfaces.
Practical implications
The method can be applied to a wide range of practical problems.
Originality/value
The method is simple. It not only has the advantage of Lagrangian‐type schemes but also keeps the robustness of Eulerian schemes.
Details
Keywords
Eric Daniel and Jean‐Claude Loraud
A numerical simulation of a two‐phase dilute flow (droplet‐gas mixture) is carried out by using a finite volume method based on Riemann solvers. The computational domain…
Abstract
A numerical simulation of a two‐phase dilute flow (droplet‐gas mixture) is carried out by using a finite volume method based on Riemann solvers. The computational domain represents a one‐ended pipe with holes at its upper wall which lead into an enclosure. The aim of this study is to determine the parameters of such a flow. More specially, an analytical solution is compared with numerical results to assess the mass flow rates through the vents in the pipe. Inertia effects dominate the dynamic behaviour of droplets, which causes a non‐homogeneous flow in the cavity. The unsteady effects are also important, which makes isentropical calculation irrelevant and shows the necessity of the use of CFD tools to predict such flows. No relation can be extracted from the numerical results between the gas and the dispersed mass flow rates across the holes. But a linear variation law for the droplet mass flow versus the position of the holes is pointed out, which is independent of the incoming flow when the evaporating effects are quite low.