Search results
1 – 10 of 21M. Khalis and R. Masrour
The purpose of this study is to investigate the behavior of a silicon solar cell when subjected to a magnetic field. Specifically, the study aims to understand how the presence of…
Abstract
Purpose
The purpose of this study is to investigate the behavior of a silicon solar cell when subjected to a magnetic field. Specifically, the study aims to understand how the presence of the magnetic field influences the distribution of excess minority carriers within the base region of the solar cell. By solving the one-dimensional continuity equation under these conditions, the study seeks to elucidate the transient dynamics of carrier generation, recombination and transport processes. This research contributes to the broader understanding of how external magnetic fields can impact the performance and efficiency of silicon solar cells, potentially informing future optimizations or applications in photovoltaic technology.
Design/methodology/approach
The solar cell is assumed to be uniformly illuminated, which simplifies the analysis of carrier generation to a function of depth (x). The emitter and space charge region contributions are considered while neglecting the diffusion region. The injection level remains constant throughout the analysis, focusing specifically on the base thickness region, H = 200 µm.
Findings
The findings of this study reveal significant insights into the behavior of a silicon solar cell under the influence of a magnetic field. Key findings include Impact on carrier distribution: the magnetic field affects the distribution of excess minority carriers within the base region of the solar cell. This distribution is crucial for understanding the efficiency of carrier collection and overall cell performance. Transient dynamics: the transient behavior of carrier generation, recombination and transport processes in the base region is influenced by the magnetic field. This understanding helps in predicting the response time and effectiveness of the solar cell under varying magnetic field strengths. Optimization potential: insights gained from this study suggest potential strategies for optimizing the design and operation of silicon solar cells to enhance their performance in environments where magnetic fields are present. Theoretical framework: the study provides a theoretical framework based on the one-dimensional continuity equation, offering a systematic approach to analyzing and predicting the behavior of solar cells under magnetic field conditions. These findings contribute to advancing the understanding of how external factors such as magnetic fields can impact the operation and efficiency of silicon solar cells, thereby guiding future research and development efforts in photovoltaic technology.
Originality/value
The originality and value of this study lie in its contribution to advancing the understanding of how magnetic fields influence silicon solar cell performance, providing both theoretical insights and potential practical applications in diverse technological contexts.
Details
Keywords
R. Masrour, M. Ben Ali, H. El Moussaoui, Mohamed Hamedoun, A. Benyoussef and E.K. Hlil
The purpose of this paper is to synthesize the manganese ferrite nanoparticle MnFe2O4 and to investigate the structure, size and to study the electronic and the magnetic…
Abstract
Purpose
The purpose of this paper is to synthesize the manganese ferrite nanoparticle MnFe2O4 and to investigate the structure, size and to study the electronic and the magnetic properties of MnFe2O4 nanoparticles.
Design/methodology/approach
The co-precipitation method is used to synthesize the MnFe2O4. The structure and size were investigated by X-ray diffraction. The superconducting quantum interference device is used to determine the some magnetic ground. From theoretical investigation point of view self-consistent ab initio calculations, based on density functional theory approach using full potential linear augmented plane wave method, were performed to investigate both electronic and magnetic properties of the MnFe2O4. The high temperatures series expansion (HTSE) is used to study the magnetic properties of MnFe2O4.
Findings
The saturation magnetization, the coercivity and the transition temperature varied between 21-43 emu/g, 20-50 Oe and 571-630 K, respectively, have been studied. The gap energy of MnFe2O4 has been deduced. The critical temperature and the critical exponent have been obtained using HTSEs.
Originality/value
In the present work, the authors study the electronic and magnetic properties of MnFe2O4. The results obtained by the experiment and by ab initio calculations were used in HTSE as input to deduce other physical parameters.
Details
Keywords
The purpose of this paper is to study the magnetic properties of the materials Ni1−xCoxMnGe systems by: mean field theory, probability law and high‐temperature series expansions…
Abstract
Purpose
The purpose of this paper is to study the magnetic properties of the materials Ni1−xCoxMnGe systems by: mean field theory, probability law and high‐temperature series expansions (HTSE) in the range 0≤x≤1. The nearest neighbour J1(x) and the next‐nearest neighbour super‐exchange interaction J2(x) are calculated, using the mean field theory and in the range 0≤x≤1.
Design/methodology/approach
The magnetic phase diagrams (TC versus dilution x) and the critical exponents associated with the magnetic susceptibility (γ) and with the correlation lengths (ν) are deduced for Ni1−xCoxMnGe in the ordered phase by HTSE method has combined with the Padé approximants method for the Ni1−xCoxMnGe.
Findings
The obtained magnetic phase diagram of Ni1−xCoxMnGe systems is comparable with those obtained by experiment. The values of critical exponents are nearest to those of 3D Heisenberg model and insensitive to the dilution.
Originality/value
Besides the magnetic shape memory effect, the magnetocaloric effect, which exhibits in Ni‐Mn‐Ge or Co‐Mn‐Ge alloys, is of technological interest.
Details
Keywords
The magnetic properties of CoAl2−2xCo2xO4 for 0 ≤ x ≤ 1 are studied. The values of the nearest neighbour (J1), next‐nearest neighbour (J2), intra‐plane (Jaa) and inter‐plane (Jab…
Abstract
The magnetic properties of CoAl2−2xCo2xO4 for 0 ≤ x ≤ 1 are studied. The values of the nearest neighbour (J1), next‐nearest neighbour (J2), intra‐plane (Jaa) and inter‐plane (Jab,Jac) exchange interactions are calculated by the mean field theory for ordered region and by the probability law adapted of the nature of dilution problem in A‐spinel lattice in spin glass region. The high‐temperature series expansions have been applied in the CoAl2−2xCo2xO4 systems, combined with the Padé approximants method, to determine the Néel temperature TN (K) or freezing temperature TSG (K) in the range 0 ≤ x ≤ 1. The critical exponents associated with the magnetic susceptibility (y) and the correlation lengths (v) are deduced in the range ordered 0.3 ≤ x ≤ 1. The obtained values of y and v are insensitive to the dilution ratio x and may be compared with other theoretical results based on 3D Heisenberg model.
Details
Keywords
Rachid Aharrouch, Karima El Kihel, Mohamed Madani, Nabil Hachem, Amer Lafhal and Mohammed El Bouziani
The purpose of this paper is to study the magnetic properties and the hysteresis behavior of a ferrimagnetic cubic Ising nanowire with mixed spins S = 3/2 and S = 5/2 in which the…
Abstract
Purpose
The purpose of this paper is to study the magnetic properties and the hysteresis behavior of a ferrimagnetic cubic Ising nanowire with mixed spins S = 3/2 and S = 5/2 in which the atoms are placed alternately.
Design/methodology/approach
In order to investigate the effects of the exchange interactions and crystal field on the magnetic properties and hysteresis behavior of the nanowire, we have used the Monte Carlo simulation. More precisely, we have plotted the thermal variations of the sublattice and total magnetizations for different values of the Hamiltonian parameters, and we have presented the corresponding phase diagrams. In addition, the influence of an external magnetic field is examined by plotting the variations of hysteresis loops with the change of temperature and crystal field.
Findings
All phase transition found in this study are of second-order and the critical temperatures increase linearly with the increase of the exchange interactions. The compensation temperatures appear only for some domains of crystal field D and exchange interaction JB of the sublattice (B). Moreover, when studying the hysteresis behavior, the system can show one or double hysteresis loops.
Originality/value
The authors consider that this research is consistent with the scientific axis of the journal which benefits a great esteem in our country and in the world. In addition, the results are of technological interest.
Details
Keywords
R. Masrour, A. Benyoussef and M. Hamedoun
This paper aims to combine the results of magnetic measurements with high temperature series expansions to determine the magnetic phase diagram of SrMn1−xFexO3 0≤x≤1 perovskites…
Abstract
Purpose
This paper aims to combine the results of magnetic measurements with high temperature series expansions to determine the magnetic phase diagram of SrMn1−xFexO3 0≤x≤1 perovskites materials.
Design/methodology/approach
The authors have found antiferromagnetic ordering for lightly and heavily Fe‐substituted material, while intermediate substitution leads to spin‐glass behavior. Near the SrMn0.5Fe0.5O3 composition these two types of ordering are found to coexist and affect one another.
Findings
The spin glass behavior may be caused by competing ferromagnetic and antiferromagnetic interactions among Mn4+ and observed Fe3+ and Fe5+ ions.
Originality/value
The magnetic perovskites materials are several application in industrial applications (spintronics, magnetic random‐access memory (MRAM), …).
Details
Keywords
Maksym Kraiev, Eugene Voronkov and Violeta Kraieva
The purpose is to calculate the change in the total energy of a small fragment of an idealized lattice of iron (in its pure form and with impurity atoms) containing an edge…
Abstract
Purpose
The purpose is to calculate the change in the total energy of a small fragment of an idealized lattice of iron (in its pure form and with impurity atoms) containing an edge dislocation during its elementary motion at one interatomic spacing, both under the influence of a constant magnetic field and without it. The introduction of a magnetic field into the system is aimed at checking the adequacy of the description of the phenomenon of magnetoplasticity by changing the total energy of the atomic system.
Design/methodology/approach
The design procedure is based on a quantum-mechanical description of the switching process of the covalent bond of atoms in the dislocation core. The authors used the method of density functional theory in the Kohn-Shem version, implemented in the GAUSSIAN 09 software package. Using the perturbation theory, the authors modeled the impact of an external constant magnetic field on the energy of a system of lattice atoms.
Findings
The simulation results confirmed the effect of an external constant magnetic field on the switching energy of the covalent bond of atoms in the dislocation core, and also a change in the magnetic susceptibility of a system of atoms with a dislocation. This complements the description of the magnetoplastic effect during the deformation of metals.
Originality/value
The authors created quantum-mechanical models of the dislocation motion in the Fe crystal lattice: without impurities, with a substitutional atom Cr and with an interstitial atom C. The models take into account the influence of an external constant magnetic field.
Details
Keywords
Karima El Kihel, Rachid Aharrouch, Yahya Al Qahoom, Mohamed Madani, Nabil Hachem and Mohammed El Bouziani
The purpose of this article is to investigate the magnetic properties and the hysteresis loops behavior of a ferrimagnetic cubic nanowire with mixed spins SA = 3/2 and SB = 2.
Abstract
Purpose
The purpose of this article is to investigate the magnetic properties and the hysteresis loops behavior of a ferrimagnetic cubic nanowire with mixed spins SA = 3/2 and SB = 2.
Design/methodology/approach
We have used the Monte Carlo simulation to examine the influences of the exchange interaction JB, the crystal field ∆ and the temperature on the magnetic properties and hysteresis loops of the nanowire. More exactly, we have shown the temperature dependence of the sublattice magnetizations (mA and mB) and the total magnetization (M) for several values of the Hamiltonian parameters, as well as the corresponding phase diagrams. Finally, the effect of an external magnetic field is studied by plotting the hysteresis loops of the system for different values of exchange interaction, crystal field and temperature.
Findings
The obtained results show the existence of second-order phase transitions, as well as the compensation behavior. Moreover, according to the values of the Hamiltonian parameters, the system can exhibit one, two or three hysteresis loops.
Originality/value
The magnetic nanowires are of great interest in experimental works, but without theoretical explanations, the experimental results cannot be clarified in depth. For this, we contribute through this theoretical study to understand the nanowires, especially those with mixed spins (2, 3/2).
Details
Keywords
Samira Idrissi, Soumia Ziti, Hicham Labrim and Lahoucine Bahmad
In this paper, using Monte Carlo simulations (MCSs) under the metropolis algorithm, the authors study the magnetic properties of the yttrium-based Heusler alloys: Y2CrGa and…
Abstract
Purpose
In this paper, using Monte Carlo simulations (MCSs) under the metropolis algorithm, the authors study the magnetic properties of the yttrium-based Heusler alloys: Y2CrGa and YFeCrGa. In the first step, the authors elaborate and discuss the ground-state phase diagrams of the more stable configurations. It is worth to note that the full-Heusler alloy Y2CrGa contains only one magnetic atom (Cr), while the quaternary Heusler alloy YFeCrGa has two magnetic atoms (Cr and Fe). This leads to modeling of the compound Y2CrGa by a Hamiltonian containing only one magnetic spin moment (S = 2), while the quaternary Heusler alloy YFeCrGa is modeled by a Hamiltonian containing two magnetic spin moments (Q = 5/2 and s = 2). The results of the study reveal that the critical temperature increases when increasing the reduced crystal field for the two studied compounds. To complete this study, the authors elaborated the hysteresis cycles of the two yttrium-based Heusler alloys: Y2CrGa and YFeCrGa.
Design/methodology/approach
In this paper, the authors study the magnetic properties and the critical behavior of the yttrium-based Heusler alloys, Y2CrGa and YFeCrGa, using MCSs under the metropolis algorithm. In the first step, the authors elaborate and discuss the ground-state phase diagrams of the more stable configurations for the both structures at null temperature (T = 0). On the other hand, for non-null temperature (T ≠ 0), the authors investigate the critical behavior of these two yttrium-based Heusler alloys: Y2CrGa and YFeCrGa. It is worth to note that the full-Heusler alloy Y2CrGa contains only one magnetic atom (Cr), while the quaternary Heusler alloy YFeCrGa has two magnetic atoms (Cr and Fe). Hence, the compound Y2CrGa can be modeled by a Hamiltonian containing only one magnetic spin moment (S = 2), while the quaternary Heusler alloy YFeCrGa is modeled by a Hamiltonian containing two magnetic spin moments (Q = 5/2 and s = 2). Moreover, the results of the study reveal that the critical temperature increases when increasing the reduced crystal field for the two studied compounds. To complete this study, the authors elaborated the hysteresis cycles of the two yttrium-based Heusler alloys: Y2CrGa and YFeCrGa.
Findings
The authors elaborate the ground-state phase diagrams of the more stable configurations. It is worth to note that the full-Heusler alloy Y2CrGa contains only one magnetic atom (Cr), while the quaternary Heusler alloy YFeCrGa has two magnetic atoms (Cr and Fe). This leads to modeling of the compound Y2CrGa by a Hamiltonian containing only one magnetic spin moment (S = 2), while the quaternary Heusler alloy YFeCrGa is modeled by a Hamiltonian containing two magnetic spin moments (Q = 5/2 and s = 2). The results of the study reveal that the critical temperature increases when increasing the reduced crystal field for the two studied compounds. To complete this study, the authors elaborated the hysteresis cycles of the two yttrium-based Heusler alloys: Y2CrGa and YFeCrGa.
Research limitations/implications
The authors elaborate the ground-state phase diagrams of the more stable configurations. It is worth to note that the full-Heusler alloy Y2CrGa contains only one magnetic atom (Cr), while the quaternary Heusler alloy YFeCrGa has two magnetic atoms (Cr and Fe). This leads to modeling of the compound Y2CrGa by a Hamiltonian containing only one magnetic spin moment (S = 2), while the quaternary Heusler alloy YFeCrGa is modeled by a Hamiltonian containing two magnetic spin moments (Q = 5/2 and s = 2). The results of the study reveal that the critical temperature increases when increasing the reduced crystal field for the two studied compounds. To complete this study, the authors elaborated the hysteresis cycles of the two yttrium-based Heusler alloys: Y2CrGa and YFeCrGa.
Practical implications
The authors elaborate the ground-state phase diagrams of the more stable configurations. It is worth to note that the full-Heusler alloy Y2CrGa contains only one magnetic atom (Cr), while the quaternary Heusler alloy YFeCrGa has two magnetic atoms (Cr and Fe). This leads to modeling of the compound Y2CrGa by a Hamiltonian containing only one magnetic spin moment (S = 2), while the quaternary Heusler alloy YFeCrGa is modeled by a Hamiltonian containing two magnetic spin moments (Q = 5/2 and s = 2). The results of the study reveal that the critical temperature increases when increasing the reduced crystal field for the two studied compounds. To complete this study, the authors elaborated the hysteresis cycles of the two yttrium-based Heusler alloys: Y2CrGa and YFeCrGa.
Social implications
The authors elaborate the ground-state phase diagrams of the more stable configurations. It is worth to note that the full-Heusler alloy Y2CrGa contains only one magnetic atom (Cr), while the quaternary Heusler alloy YFeCrGa has two magnetic atoms (Cr and Fe). This leads to modeling of the compound Y2CrGa by a Hamiltonian containing only one magnetic spin moment (S = 2), while the quaternary Heusler alloy YFeCrGa is modeled by a Hamiltonian containing two magnetic spin moments (Q = 5/2 and s = 2). The results of the study reveal that the critical temperature increases when increasing the reduced crystal field for the two studied compounds. To complete this study, the authors elaborated the hysteresis cycles of the two yttrium-based Heusler alloys: Y2CrGa and YFeCrGa.
Originality/value
The authors elaborate the ground-state phase diagrams of the more stable configurations. It is worth to note that the full-Heusler alloy Y2CrGa contains only one magnetic atom (Cr), while the quaternary Heusler alloy YFeCrGa has two magnetic atoms (Cr and Fe). This leads to modeling of the compound Y2CrGa by a Hamiltonian containing only one magnetic spin moment (S = 2), while the quaternary Heusler alloy YFeCrGa is modeled by a Hamiltonian containing two magnetic spin moments (Q = 5/2 and s = 2). The results of the study reveal that the critical temperature increases when increasing the reduced crystal field for the two studied compounds. To complete this study, the authors elaborated the hysteresis cycles of the two yttrium-based Heusler alloys: Y2CrGa and YFeCrGa.
Details
Keywords
Karima El Kihel, Hasnae Saadi, Rachid Aharrouch, Abdelmoumen El Antari, Nabil Hachem, Mohamed Madani and Mohammed El Bouziani
The authors investigate the magnetic properties of a mixed spin-3/2 and spin-2 Blume-Capel model on square and cubic lattices with two different single-ion anisotropies.
Abstract
Purpose
The authors investigate the magnetic properties of a mixed spin-3/2 and spin-2 Blume-Capel model on square and cubic lattices with two different single-ion anisotropies.
Design/methodology/approach
To study the critical behavior of a mixed spin-3/2 and spin-2 system, the authors have used a real space renormalization group approximation and specifically the Migdal-Kadanoff technique. The authors give the phase diagrams for two different cases: (1) on the (Δ/|J|, 1/|J|) plane with ΔA = ΔB = Δ, and (2) on the (ΔA/|J|, 1/|J|) and (ΔB/|J|, 1/|J|) planes for selected values of ΔB/|J| and ΔA/|J|, respectively.
Findings
The phase diagrams obtained show that the system exhibits both second- and first-order phase transitions as well as tricritical points for some values of the anisotropies. Moreover, using the variation of the free energy and its derivative at low temperatures, the authors have seen the appearance of first-order transitions at very low temperatures.
Originality/value
Few investigations of mixed spin-3/2 and spin-2 systems with crystal field have been realized. For this reason, the authors use the renormalization group approach to complete the work done on these systems. In absence of an exact solution, this contributes to the synthesis of the approximation results on mixed spins models.
Details