Search results

1 – 10 of 11
Article
Publication date: 20 June 2008

U. Hagn, M. Nickl, S. Jörg, G. Passig, T. Bahls, A. Nothhelfer, F. Hacker, L. Le‐Tien, A. Albu‐Schäffer, R. Konietschke, M. Grebenstein, R. Warpup, R. Haslinger, M. Frommberger and G. Hirzinger

Surgical robotics can be divided into two groups: specialized and versatile systems. Versatile systems can be used in different surgical applications, control architectures and…

4931

Abstract

Purpose

Surgical robotics can be divided into two groups: specialized and versatile systems. Versatile systems can be used in different surgical applications, control architectures and operating room set‐ups, but often still based on the adaptation of industrial robots. Space consumption, safety and adequacy of industrial robots in the unstructured and crowded environment of an operating room and in close human robot interaction are at least questionable. The purpose of this paper is to describe the DLR MIRO, a new versatile lightweight robot for surgical applications.

Design/methodology/approach

The design approach of the DLR MIRO robot focuses on compact, slim and lightweight design to assist the surgeon directly at the operating table without interference. Significantly reduced accelerated masses (total weight 10 kg) enhance the safety of the system during close interaction with patient and user. Additionally, MIRO integrates torque‐sensing capabilities to enable close interaction with human beings in unstructured environments.

Findings

A payload of 30 N, optimized kinematics and workspace for surgery enable a broad range of possible applications. Offering position, torque and impedance control on Cartesian and joint level, the robot can be integrated easily into telepresence (e.g. endoscopic surgery), autonomous or soft robotics applications, with one or multiple arms.

Originality/value

This paper considers lightweight and compact design as important design issues in robotic assistance systems for surgery.

Details

Industrial Robot: An International Journal, vol. 35 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 June 2008

Rinaldo Michelini and Roberto Razzoli

The purpose of this paper is to consider surgical robotics, with a focus on technology and design issues for remote‐mode operation assistance. The investigation leads to the…

Abstract

Purpose

The purpose of this paper is to consider surgical robotics, with a focus on technology and design issues for remote‐mode operation assistance. The investigation leads to the definition of the technical characteristics of a co‐robotic positioning device (CRPD), to be developed in support of a split‐duty approach to planning. The expected characteristics and advantages are outlined, including the operation potential of special‐purpose devices (e.g. an automatic changer for surgical tools) and of scope‐driven enhancers (e.g. the exploration of the intervention theatre).

Design/methodology/approach

The paper addresses example developments based on projects performed with the co‐operation of other robot laboratories in Munich and Paris. The CRPD concept is applied in relation to the DLR KineMedic® arm (developed by the Munich laboratory), and with the LRP prototype mini‐arm (built by the Paris laboratory).

Findings

Minimally‐invasive surgery deserves increasing attention to reduce post‐operative hospital stays and to reduce complications. This leads to new trends in robotics, to facilitate safe, fast and accurate remote manipulation, and integrated computer‐aided implements. The features of the example CRPD design are summarised for the two cases.

Practical implications

The overall comments consider minimally‐invasive robotic surgery as a given intervention practice in the near future, and the split‐duty approach, supported by the CRPD technology, as a valuable aid for human‐robot co‐operation, according to the “best‐of‐skills” idea, supporting intervention under the surgeon's control.

Originality/value

This investigation shows new results aimed at expanding the operation versatility of robotics with integrated intelligence, to enhance scope‐driven alternatives and out‐of‐reach handling with improved dexterity and safe autonomic processing.

Details

Industrial Robot: An International Journal, vol. 35 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 December 2017

Shuizhong Zou, Bo Pan, Yili Fu and Shuixiang Guo

The purpose of this paper is to propose a control algorithm to improve the backdrivability performance of minimally invasive surgical robotic arms, so that precise manual…

Abstract

Purpose

The purpose of this paper is to propose a control algorithm to improve the backdrivability performance of minimally invasive surgical robotic arms, so that precise manual manipulations of robotic arms can be performed in the preoperative operation.

Design/methodology/approach

First, the flexible-joint dynamic model of the 3-degree of freedom remote center motion (RCM) mechanisms of minimally invasive surgery (MIS) robot is derived and its dynamic parameters and friction parameters are identified. Next, the angular velocities and angular accelerations of joints are estimated in real time by the designed Kalman filter. Finally, a control algorithm based on Kalman filter is proposed to enhance the backdrivability of RCM mechanisms by compensating for the internally generated gravitational, frictional and inertial resistances experienced during the positioning and orientating.

Findings

The parameter identification for RCM mechanisms can be experimentally evaluated from comparison between the measured torques and the reconstructed torques. The accuracy and convergence of the real-time estimation of angular velocity and acceleration of the joint by the designed Kalman filter can be verified from corresponding simulation experiments. Manual adjustment experiments and animal experiments validate the effectiveness of the proposed backdrivability control algorithm.

Research limitations/implications

The backdrivability control algorithm presented in this paper is a universal method to enhance the manual operation performance of robots, which can be used not only in the medical robot preoperative manual manipulation but also in robot haptic interaction, industrial robot direct teaching and active rehabilitation training of rehabilitation robot and so on.

Originality/value

Compared with other backdrivability design methods, the proposed algorithm achieves good backdrivability for RCM mechanisms without using force sensors and accelerometers. In addition, this paper presents a new static friction compensation approach for a joint moving with very low velocity.

Details

Industrial Robot: An International Journal, vol. 45 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 December 2004

Tobias Ortmaier, Holger Weiss and Volkmar Falk

Minimally invasive endoscopic surgery and minimally invasive surgery challenge surgical skills due to the operator's separation from the surgical field and the requirements for…

1127

Abstract

Minimally invasive endoscopic surgery and minimally invasive surgery challenge surgical skills due to the operator's separation from the surgical field and the requirements for long instruments with limited dexterity. To overcome the drawbacks of conventional endoscopic instruments computer‐enhanced telemanipulation systems and robotic systems have been developed in the past. This paper summarizes the requirements for minimally invasive robotic assisted surgery and describes a new robot that has been developed at the German Aerospace Center (DLR). The discussion includes a description of the robotic arm, the appropriate control laws, as well as the requirements for actuated and sensorized instruments.

Details

Industrial Robot: An International Journal, vol. 31 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 August 2017

Weibang Bai, Qixin Cao, Pengfei Wang, Peng Chen, Chuntao Leng and Tiewen Pan

Robotic systems for laparoscopic minimally invasive surgery (MIS) always end up with highly sophisticated mechanisms and control schemes – making it a long and hard development…

Abstract

Purpose

Robotic systems for laparoscopic minimally invasive surgery (MIS) always end up with highly sophisticated mechanisms and control schemes – making it a long and hard development process with a steep price. This paper aims to propose and realize a new, efficient and convenient strategy for building effective control systems for surgical and even other complex robotic systems.

Design/methodology/approach

A novel method that takes advantage of the modularization concept by integrating two middleware technologies (robot operating system and robotic technology middleware) into a common architecture based on the strengths of both was designed and developed.

Findings

Tests of the developed control system showed very low time-delay between the master and slave sides; good movement representation on the slave manipulator; and high positional and operational accuracy. Moreover, the new development strategy trial came with much higher efficiency and lower costs.

Research limitations/implications

This method results in a modularized and distributed control system that is amenable to collaboratively develop; convenient to modify and update; componentized and easy to extend; mutually independent among subsystems; and practicable to be running and communicating across multiple operating systems. However, experiments show that surgical training and updates of the robotic system are still required to achieve better proficiency for completing complex minimally invasive surgical operations with the proposed and developed system.

Originality/value

This research proposed and developed a novel modularization design method and a novel architecture for building a distributed teleoperation control system for laparoscopic MIS.

Details

Industrial Robot: An International Journal, vol. 44 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 February 2022

Tao Song, Bo Pan, Guojun Niu and Yili Fu

This study aims to represent a novel closed-form solutions method based on the product of the exponential model to solve the inverse kinematics of a robotic manipulator. In…

121

Abstract

Purpose

This study aims to represent a novel closed-form solutions method based on the product of the exponential model to solve the inverse kinematics of a robotic manipulator. In addition, this method is applied to master–slave control of the minimally invasive surgical (MIS) robot.

Design/methodology/approach

For MIS robotic inverse kinematics, the closed-form solutions based on the product of the exponential model of manipulators are divided into the RRR and RRT subproblems. Geometric and algebraic constraints are used as preconditions to solve two subproblems. In addition, several important coordinate systems are established on the surgical robot and master–slave mapping strategies are illustrated in detail. Finally, the MIS robot can realize master–slave control by combining closed-form solutions and master–slave mapping strategy.

Findings

The simulation of the instrument manipulator based on the RRR and RRT subproblems is executed to verify the correctness of the proposed closed-form solutions. The fact that the accuracy of the closed-form solutions is better than that of the compensation method is validated by the contrastive linear trajectory experiment, and the average and the maximum tracking errors are 0.1388 mm and 0.3047 mm, respectively. In the animal experiment, the average and maximum tracking error of the left instrument manipulator are 0.2192 mm and 0.4987 mm, whereas the average and maximum tracking error of the right instrument manipulator are 0.1885 mm and 0.6933 mm. The successful completion of the animal experiment comprehensively demonstrated the feasibility and reliability of the master–slave control strategy based on the novel closed-form solutions.

Originality/value

The proposed closed-form solutions are error-free in theory. The master–slave control strategy is not affected by calculation error when the closed-form solutions are used in the surgical robot. And the accuracy and reliability of the master–slave control strategy are greatly improved.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 May 2022

Hang Su, Wen Qi, Yunus Schmirander, Salih Ertug Ovur, Shuting Cai and Xiaoming Xiong

The purpose of this paper is to develop a human activity-aware adaptive shared control solution for human–robot interaction in surgical operation. Hands-on control and…

Abstract

Purpose

The purpose of this paper is to develop a human activity-aware adaptive shared control solution for human–robot interaction in surgical operation. Hands-on control and teleoperation are two main procedures switched frequently in teleoperated minimally invasive surgery (MIS). The detailed human activity in the procedures can be defined and recognized using the sensor information. In this paper, a novel continuous adaptive shared control method is proposed for manipulators with Cartesian impedance control in the surgical scenario.

Design/methodology/approach

A human activity-aware shared control solution by adjusting the weight function is introduced to achieve smooth transition among different human activities, including hands-on control and teleoperation. Instead of introducing various controllers and switching among them during the surgical procedures, the proposed solution integrated all the human activity-based controllers into a single controller and the transition among the procedures is smooth and stable. The effectiveness of the proposed control approach was verified in a lab setup environment. The results prove that the robot behavior is stable and smooth. The algorithm is feasible and can achieve a human activity-aware adaptive shared control solution for human–robot interaction in surgical operation.

Findings

Based on the experiment, the results confirm that the proposed human activity-aware adaptive shared control solution can switch the device behavior automatically using the real-time sensor information. The transition between different activities is smooth and stable.

Practical implications

For teleoperated surgical applications, the proposed method integrated different controllers for various human activities into a single controller by recognizing the activities using the real-time sensor information and the transition between different procedures is smooth and stable. It eases the surgical work for the surgeon and enhances the safety during the transition of control modes. The presented scheme provides a general solution to address the switching of working procedures in teleoperated MIS.

Originality/value

To the best of the authors’ knowledge, this paper is the first to propose human activity-aware adaptive shared control solution for human–robot interaction in surgical operations.

Details

Assembly Automation, vol. 42 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 19 October 2015

Carlos Eduardo Díaz, Roemi Fernández, Manuel Armada and Felipe de Jesús García Gutiérrez

– This paper aims to provide an insight into recent advancements and developments of robotics for Natural Orifice Transluminal Surgery (NOTES) procedures.

Abstract

Purpose

This paper aims to provide an insight into recent advancements and developments of robotics for Natural Orifice Transluminal Surgery (NOTES) procedures.

Design/methodology/approach

Following an introduction that highlights the evolution from Minimally Invasive Surgery (MIS) to NOTES in the medical field, this paper reviews the main robotics systems that have been designed and implemented for MIS and NOTES, summarising their advantages and limitations and remarking the technological challenges and the requirements that still should be addressed and fulfilled.

Findings

The state-of-the-art presented in this paper shows that the majority of the platforms created for NOTES are laboratory prototypes, and their performances are still far from being optimal. New solutions are required to solve the problems confronted by the proposed systems such as the limited number of DOFs, the limited resolution, the optimal fixation and stiffening of the instruments for enabling stable and precise operation, the effective transmission of forces to the tip tools, the improvement of the force feedback feeling and the proper visualization and spatial orientation of the surgical field. Advances in robotics can contribute significantly to the development and future implementation of the NOTES procedure.

Originality/value

This paper highlights the current trends and challenges ahead in robotics applied to NOTES procedure.

Details

Industrial Robot: An International Journal, vol. 42 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 August 2017

Quanquan Liu, Chaoyang Shi, Bo Zhang, Chunbao Wang, Lihong Duan, Tongyang Sun, Xin Zhang, Weiguang Li, Zhengzhi Wu and Masakatsu G. Fujie

Paediatric congenital esophageal atresia surgery typically requires delicate and dexterous operations in a narrow and confined workspace. This study aims to develop a novel robot…

Abstract

Purpose

Paediatric congenital esophageal atresia surgery typically requires delicate and dexterous operations in a narrow and confined workspace. This study aims to develop a novel robot assisted surgical system to address these challenges.

Design/methodology/approach

The proposed surgical robot consists of two symmetrical slave arms with nine degree of freedoms each. Each slave arm uses a rigid-dexterous configuration and consists of a coarse positioning manipulator and a distal fine operation manipulator. A small Selective Compliance Assembly Robot Arm (SCARA) mechanism was designed to form the main component of the coarse positioning unit, ensuring to endure large forces along the vertical direction and meet the operational demands. The fine positioning manipulator applied the novel design using flexible shafts and universal joints to achieve delicate operations while possessing a high rigidity. The corresponding kinematics has been derived and then was validated by a co-simulation that was performed based on the combined use of Adams and MATLAB with considering the real robot mass information. Experimental evaluations for the tip positioning accuracy and the ring transfer tasks have been performed.

Findings

The simulation was performed to verify the correctness of the derived inverse kinematics and demonstrated the robot’s flexibility. The experimental results illustrated that the end-effector can achieve a positioning accuracy within 1.5 mm in a confined 30 × 30 × 30 mm workspace. The ring transfer task demonstrated that the surgical robot is capable of providing a solution for dexterous tissue intervention in a narrow workspace for paediatric surgery.

Originality/value

A novel and compact surgical assist robot is developed to support delicate operations by using the dexterous slave arm. The slave arm consists of a SCARA mechanism to avoid experiencing overload in the vertical direction and a tool manipulator driven by flexible shafts and universal joints to provide high dexterity for operating in a narrow workspace.

Article
Publication date: 9 January 2009

Jongwon Lee, Inwook Hwang, Keehoon Kim, Seungmoon Choi, Wan Kyun Chung and Young Soo Kim

The purpose of this paper is to present a surgical robot for spinal fusion and its control framework that provides higher operation accuracy, greater flexibility of robot position…

Abstract

Purpose

The purpose of this paper is to present a surgical robot for spinal fusion and its control framework that provides higher operation accuracy, greater flexibility of robot position control, and improved ergonomics.

Design/methodology/approach

A human‐guided robot for the spinal fusion surgery has been developed with a dexterous end‐effector that is capable of high‐speed drilling for cortical layer gimleting and tele‐operated insertion of screws into the vertebrae. The end‐effector is position‐controlled by a five degrees‐of‐freedom robot body that has a kinematically closed structure to withstand strong reaction force occurring in the surgery. The robot also allows the surgeon to control cooperatively the position and orientation of the end‐effector in order to provide maximum flexibility in exploiting his or her expertise. Also incorporated for improved safety is a “drill‐by‐wire” mechanism wherein a screw is tele‐drilled by the surgeon in a mechanically decoupled master/slave system. Finally, a torque‐rendering algorithm that adds synthetic open‐loop high‐frequency components on feedback torque increases the realism of tele‐drilling in the screw‐by‐wire mechanism.

Findings

Experimental results indicated that this assistive robot for spinal fusion performs drilling tasks within the static regulation errors less than 0.1 μm for position control and less than 0.05° for orientation control. The users of the tele‐drilling reported subjectively that they experienced torque feedback similar to that of direct screw insertion.

Research limitations/implications

Although the robotic surgery system itself has been developed, integration with surgery planning and tracking systems is ongoing. Thus, the screw insertion accuracy of a whole surgery system with the assistive robot is to be investigated in the near future.

Originality/value

The paper arguably pioneers the dexterous end‐effector appropriately designed for spinal fusion, the cooperative robot position‐control algorithm, the screw‐by‐wire mechanism for indirect screw insertion, and the torque‐rendering algorithm for more realistic torque feedback. In particular, the system has the potential of circumventing the screw‐loosening problem, a common defect in the conventional surgeon‐operated or robot‐assisted spinal fusion surgery.

Details

Industrial Robot: An International Journal, vol. 36 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 11