Search results

1 – 10 of over 2000
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 2 October 2017

Jui-Feng Yeh, Yu-Jui Huang and Kao-Pin Huang

This study aims to provide an ontology based Baysian network for clinical specialty supporting. As a knowledge base, ontology plays an essential role in domain applications…

105

Abstract

Purpose

This study aims to provide an ontology based Baysian network for clinical specialty supporting. As a knowledge base, ontology plays an essential role in domain applications especially in expert systems. Interactive question answering systems are suitable for personal domain consulting and recommended for real-time usage. Clinical specialty supporting for dispatching patients can assist hospitals to locate desired treatment departments for individuals relevant to their syndromes and disease efficiently and effectively. By referring to interactive question answering systems, individuals can understand how to alleviate time and medical resource wasting according to recommendations from medical ontology-based systems.

Design/methodology/approach

This work presents an ontology based on clinical specialty supporting using an interactive question answering system to achieve this aim. The ontology incorporates close temporal associations between words in input query to represent word co-occurrence relationships in concept space. The patterns defined in lexicon chain mechanism are further extracted from the query words to infer related concepts for treatment departments to retrieve information.

Findings

The precision and recall rates are considered as the criteria for model optimization. Finally, the inference-based interactive question answering system using natural language interface is adopted for clinical specialty supporting, and indicates its superiority in information retrieval over traditional approaches.

Originality/value

From the observed experimental results, we find the proposed method is useful in practice especially in treatment department decision supporting using metrics precision and recall rates. The interactive interface using natural language dialogue attracts the users’ attention and obtains a good score in mean opinion score measure.

Details

Engineering Computations, vol. 34 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 19 February 2018

Hui Shi, Dazhi Chong and Gongjun Yan

Semantic Web is an extension of the World Wide Web by tagging content with “meaning”. In general, question answering systems based on semantic Web face a number of difficult…

162

Abstract

Purpose

Semantic Web is an extension of the World Wide Web by tagging content with “meaning”. In general, question answering systems based on semantic Web face a number of difficult issues. This paper aims to design an experimental environment with custom rules and scalable data sets and evaluate the performance of a proposed optimized backward chaining ontology reasoning system. This study also compares the experimental results with other ontology reasoning systems to show the performance and scalability of this ontology reasoning system.

Design/methodology/approach

The authors proposed a semantic question answering system. This system has been built using ontological knowledge base including optimized backward chaining ontology reasoning system and custom rules. With custom rules, the proposed semantic question answering system will be able to answer questions that contain qualitative descriptors such as “groundbreaking” resesarch and “tenurable at university x”. Scalability has been one of the difficult issues faced by an optimized backward chaining ontology reasoning system and semantic question answering system. To evaluate the proposed ontology reasoning system, first, the authors design a number of innovative custom rule sets and corresponding query sets. The innovative custom rule sets and query sets will contribute to the future research on evaluating ontology reasoning systems as well. Then they design an experimental environment including ontologies and scalable data sets and metrics. Furthermore, they evaluate the performance of the proposed optimized backward chaining reasoning system on supporting custom rules. The evaluation results have been compared with other ontology reasoning systems as well.

Findings

The proposed innovative custom rules and query sets can be effectively employed for evaluating ontology reasoning systems. The evaluation results show that the scalability of the proposed backward chaining ontology reasoning system is better than in-memory reasoning systems. The proposed semantic question answering system can be integrated in sematic Web applications to solve scalability issues. For light weight applications, such as mobile applications, in-memory reasoning systems will be a better choice.

Originality/value

This paper fulfils an identified need for a study on evaluating an ontology reasoning system on supporting custom rules with and without external storage.

Details

Information Discovery and Delivery, vol. 46 no. 1
Type: Research Article
ISSN: 2398-6247

Keywords

Access Restricted. View access options
Article
Publication date: 30 August 2018

Yiming Zhao, Jin Zhang, Xue Xia and Taowen Le

The purpose of this paper is to evaluate Google question-answering (QA) quality.

2191

Abstract

Purpose

The purpose of this paper is to evaluate Google question-answering (QA) quality.

Design/methodology/approach

Given the large variety and complexity of Google answer boxes in search result pages, existing evaluation criteria for both search engines and QA systems seemed unsuitable. This study developed an evaluation criteria system for the evaluation of Google QA quality by coding and analyzing search results of questions from a representative question set. The study then evaluated Google’s overall QA quality as well as QA quality across four target types and across six question types, using the newly developed criteria system. ANOVA and Tukey tests were used to compare QA quality among different target types and question types.

Findings

It was found that Google provided significantly higher-quality answers to person-related questions than to thing-related, event-related and organization-related questions. Google also provided significantly higher-quality answers to where- questions than to who-, what- and how-questions. The more specific a question is, the higher the QA quality would be.

Research limitations/implications

Suggestions for both search engine users and designers are presented to help enhance user experience and QA quality.

Originality/value

Particularly suitable for search engine QA quality analysis, the newly developed evaluation criteria system expanded and enriched assessment metrics of both search engines and QA systems.

Details

Library Hi Tech, vol. 37 no. 2
Type: Research Article
ISSN: 0737-8831

Keywords

Access Restricted. View access options
Article
Publication date: 9 August 2011

María‐Dolores Olvera‐Lobo and Juncal Gutierrez‐Artacho

In the field of information retrieval, some multi‐lingual tools are being created to help the users to overcome the language barriers. Nevertheless, these tools are not developed…

509

Abstract

Purpose

In the field of information retrieval, some multi‐lingual tools are being created to help the users to overcome the language barriers. Nevertheless, these tools are not developed completely and it is necessary to investigate more for their improvement and application. One of their main problems is the choice of the linguistic resources to offer better coverage and to solve the translation problems in the context of the multi‐lingual information retrieval. This paper aims to address this issue.

Design/methodology/approach

This research is focused on the analysis of resources used by the multi‐lingual question‐answering systems, which respond to users' queries with short answers, rather than just offering a list of documents related to the search. An analysis of the main publications about the multi‐lingual QA systems was carried out, with the aim of identifying the typology, the advantages and disadvantages, and the real use and trend of each of the linguistic resources and tools used in this new kind of system.

Findings

Five of the resources most used in the cross‐languages QA systems were identified and studied: databases, dictionaries, corpora, ontologies and thesauri. The three most popular traditional resources (automatic translators, dictionaries, and corpora) are gradually leaving a widening gap for others – such as ontologies and the free encyclopaedia Wikipedia.

Originality/value

The perspective offered by the translation discipline can improve the effectiveness of QA systems.

Details

Online Information Review, vol. 35 no. 4
Type: Research Article
ISSN: 1468-4527

Keywords

Available. Open Access. Open Access
Article
Publication date: 24 June 2021

Haosen Liu, Youwei Wang, Xiabing Zhou, Zhengzheng Lou and Yangdong Ye

The railway signal equipment failure diagnosis is a vital element to keep the railway system operating safely. One of the most difficulties in signal equipment failure diagnosis…

702

Abstract

Purpose

The railway signal equipment failure diagnosis is a vital element to keep the railway system operating safely. One of the most difficulties in signal equipment failure diagnosis is the uncertainty of causality between the consequence and cause for the accident. The traditional method to solve this problem is based on Bayesian Network, which needs a rigid and independent assumption basis and prior probability knowledge but ignoring the semantic relationship in causality analysis. This paper aims to perform the uncertainty of causality in signal equipment failure diagnosis through a new way that emphasis on mining semantic relationships.

Design/methodology/approach

This study proposes a deterministic failure diagnosis (DFD) model based on the question answering system to implement railway signal equipment failure diagnosis. It includes the failure diagnosis module and deterministic diagnosis module. In the failure diagnosis module, this paper exploits the question answering system to recognise the cause of failure consequences. The question answering is composed of multi-layer neural networks, which extracts the position and part of speech features of text data from lower layers and acquires contextual features and interactive features of text data by Bi-LSTM and Match-LSTM, respectively, from high layers, subsequently generates the candidate failure cause set by proposed the enhanced boundary unit. In the second module, this study ranks the candidate failure cause set in the semantic matching mechanism (SMM), choosing the top 1st semantic matching degree as the deterministic failure causative factor.

Findings

Experiments on real data set railway maintenance signal equipment show that the proposed DFD model can implement the deterministic diagnosis of railway signal equipment failure. Comparing massive existing methods, the model achieves the state of art in the natural understanding semantic of railway signal equipment diagnosis domain.

Originality/value

It is the first time to use a question answering system executing signal equipment failure diagnoses, which makes failure diagnosis more intelligent than before. The EMU enables the DFD model to understand the natural semantic in long sequence contexture. Then, the SMM makes the DFD model acquire the certainty failure cause in the failure diagnosis of railway signal equipment.

Details

Smart and Resilient Transportation, vol. 3 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Access Restricted. View access options
Article
Publication date: 10 December 2019

Xiaoming Zhang, Mingming Meng, Xiaoling Sun and Yu Bai

With the advent of the era of Big Data, the scale of knowledge graph (KG) in various domains is growing rapidly, which holds huge amount of knowledge surely benefiting the…

331

Abstract

Purpose

With the advent of the era of Big Data, the scale of knowledge graph (KG) in various domains is growing rapidly, which holds huge amount of knowledge surely benefiting the question answering (QA) research. However, the KG, which is always constituted of entities and relations, is structurally inconsistent with the natural language query. Thus, the QA system based on KG is still faced with difficulties. The purpose of this paper is to propose a method to answer the domain-specific questions based on KG, providing conveniences for the information query over domain KG.

Design/methodology/approach

The authors propose a method FactQA to answer the factual questions about specific domain. A series of logical rules are designed to transform the factual questions into the triples, in order to solve the structural inconsistency between the user’s question and the domain knowledge. Then, the query expansion strategies and filtering strategies are proposed from two levels (i.e. words and triples in the question). For matching the question with domain knowledge, not only the similarity values between the words in the question and the resources in the domain knowledge but also the tag information of these words is considered. And the tag information is obtained by parsing the question using Stanford CoreNLP. In this paper, the KG in metallic materials domain is used to illustrate the FactQA method.

Findings

The designed logical rules have time stability for transforming the factual questions into the triples. Additionally, after filtering the synonym expansion results of the words in the question, the expansion quality of the triple representation of the question is improved. The tag information of the words in the question is considered in the process of data matching, which could help to filter out the wrong matches.

Originality/value

Although the FactQA is proposed for domain-specific QA, it can also be applied to any other domain besides metallic materials domain. For a question that cannot be answered, FactQA would generate a new related question to answer, providing as much as possible the user with the information they probably need. The FactQA could facilitate the user’s information query based on the emerging KG.

Details

Data Technologies and Applications, vol. 54 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Access Restricted. View access options
Article
Publication date: 10 February 2023

Huiyong Wang, Ding Yang, Liang Guo and Xiaoming Zhang

Intent detection and slot filling are two important tasks in question comprehension of a question answering system. This study aims to build a joint task model with some…

165

Abstract

Purpose

Intent detection and slot filling are two important tasks in question comprehension of a question answering system. This study aims to build a joint task model with some generalization ability and benchmark its performance over other neural network models mentioned in this paper.

Design/methodology/approach

This study used a deep-learning-based approach for the joint modeling of question intent detection and slot filling. Meanwhile, the internal cell structure of the long short-term memory (LSTM) network was improved. Furthermore, the dataset Computer Science Literature Question (CSLQ) was constructed based on the Science and Technology Knowledge Graph. The datasets Airline Travel Information Systems, Snips (a natural language processing dataset of the consumer intent engine collected by Snips) and CSLQ were used for the empirical analysis. The accuracy of intent detection and F1 score of slot filling, as well as the semantic accuracy of sentences, were compared for several models.

Findings

The results showed that the proposed model outperformed all other benchmark methods, especially for the CSLQ dataset. This proves that the design of this study improved the comprehensive performance and generalization ability of the model to some extent.

Originality/value

This study contributes to the understanding of question sentences in a specific domain. LSTM was improved, and a computer literature domain dataset was constructed herein. This will lay the data and model foundation for the future construction of a computer literature question answering system.

Details

Data Technologies and Applications, vol. 57 no. 5
Type: Research Article
ISSN: 2514-9288

Keywords

Access Restricted. View access options
Book part
Publication date: 8 May 2002

Matthew L. Saxton and John V. Richardson

Abstract

Details

Understanding Reference Transactions: Transforming an Art into a Science
Type: Book
ISBN: 978-0-12587-780-0

Access Restricted. View access options
Article
Publication date: 5 June 2024

Azanzi Jiomekong and Sanju Tiwari

This paper aims to curate open research knowledge graph (ORKG) with papers related to ontology learning and define an approach using ORKG as a computer-assisted tool to organize…

164

Abstract

Purpose

This paper aims to curate open research knowledge graph (ORKG) with papers related to ontology learning and define an approach using ORKG as a computer-assisted tool to organize key-insights extracted from research papers.

Design/methodology/approach

Action research was used to explore, test and evaluate the use of the Open Research Knowledge Graph as a computer assistant tool for knowledge acquisition from scientific papers.

Findings

To extract, structure and describe research contributions, the granularity of information should be decided; to facilitate the comparison of scientific papers, one should design a common template that will be used to describe the state of the art of a domain.

Originality/value

This approach is currently used to document “food information engineering,” “tabular data to knowledge graph matching” and “question answering” research problems and the “neurosymbolic AI” domain. More than 200 papers are ingested in ORKG. From these papers, more than 800 contributions are documented and these contributions are used to build over 100 comparison tables. At the end of this work, we found that ORKG is a valuable tool that can reduce the working curve of state-of-the-art research.

Access Restricted. View access options
Article
Publication date: 8 June 2020

Ming Li, Ying Li, YingCheng Xu and Li Wang

In community question answering (CQA), people who answer questions assume readers have mastered the content in the answers. Nevertheless, some readers cannot understand all…

333

Abstract

Purpose

In community question answering (CQA), people who answer questions assume readers have mastered the content in the answers. Nevertheless, some readers cannot understand all content. Thus, there is a need for further explanation of the concepts that appear in the answers. Moreover, the large number of question and answer (Q&A) documents make manual retrieval difficult. This paper aims to alleviate these issues for CQA websites.

Design/methodology/approach

In the paper, an algorithm for recommending explanatory Q&A documents is proposed. Q&A documents are modeled with the biterm topic model (BTM) (Yan et al., 2013). Then, the growing neural gas (GNG) algorithm (Fritzke, 1995) is used to cluster Q&A documents. To train multiple classifiers, three features are extracted from the Q&A categories. Thereafter, an ensemble classification model is constructed to identify the explanatory relationships. Finally, the explanatory Q&A documents are recommended.

Findings

The GNG algorithm shows good clustering performance. The ensemble classification model performs better than other classifiers. The both effect and quality scores of explanatory Q&A recommendations are high. These scores indicate the practicality and good performance of the proposed recommendation algorithm.

Research limitations/implications

The proposed algorithm alleviates information overload in CQA from the new perspective of recommending explanatory knowledge. It provides new insight into research on recommendations in CQA. Moreover, in practice, CQA websites can use it to help retrieve Q&A documents and facilitate understanding of their contents. However, the algorithm is for the general recommendation of Q&A documents which does not consider individual personalized characteristics. In future work, personalized recommendations will be evaluated.

Originality/value

A novel explanatory Q&A recommendation algorithm is proposed for CQA to alleviate the burden of manual retrieval and Q&A overload. The novel GNG clustering algorithm and ensemble classification model provide a more accurate way to identify explanatory Q&A documents. The method of ranking the explanatory Q&A documents improves the effectiveness and quality of the recommendation. The proposed algorithm improves the accuracy and efficiency of retrieving explanatory Q&A documents. It assists users in grasping answers easily.

Details

Data Technologies and Applications, vol. 54 no. 4
Type: Research Article
ISSN: 2514-9288

Keywords

1 – 10 of over 2000
Per page
102050