Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 20 August 2024

Quang Phung Duy, Oanh Nguyen Thi, Phuong Hao Le Thi, Hai Duong Pham Hoang, Khanh Linh Luong and Kim Ngan Nguyen Thi

The goal of the study is to offer important insights into the dynamics of the cryptocurrency market by analyzing pricing data for Bitcoin. Using quantitative analytic methods, the…

1395

Abstract

Purpose

The goal of the study is to offer important insights into the dynamics of the cryptocurrency market by analyzing pricing data for Bitcoin. Using quantitative analytic methods, the study makes use of a Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and an Autoregressive Integrated Moving Average (ARIMA). The study looks at how predictable Bitcoin price swings and market volatility will be between 2021 and 2023.

Design/methodology/approach

The data used in this study are the daily closing prices of Bitcoin from Jan 17th, 2021 to Dec 17th, 2023, which corresponds to a total of 1065 observations. The estimation process is run using 3 years of data (2021–2023), while the remaining (Jan 1st 2024 to Jan 17th 2024) is used for forecasting. The ARIMA-GARCH method is a robust framework for forecasting time series data with non-seasonal components. The model was selected based on the Akaike Information Criteria corrected (AICc) minimum values and maximum log-likelihood. Model adequacy was checked using plots of residuals and the Ljung–Box test.

Findings

Using the Box–Jenkins method, various AR and MA lags were tested to determine the most optimal lags. ARIMA (12,1,12) is the most appropriate model obtained from the various models using AIC. As financial time series, such as Bitcoin returns, can be volatile, an attempt is made to model this volatility using GARCH (1,1).

Originality/value

The study used partially processed secondary data to fit for time series analysis using the ARIMA (12,1,12)-GARCH(1,1) model and hence reliable and conclusive results.

Details

Business Analyst Journal, vol. 45 no. 1
Type: Research Article
ISSN: 0973-211X

Keywords

1 – 1 of 1
Per page
102050