Junjie Niu, Weimin Sang, Qilei Guo, Aoxiang Qiu and Dazhi Shi
This paper aims to propose a method of the safety boundary protection for unmanned aerial vehicles (UAVs) in the icing conditions.
Abstract
Purpose
This paper aims to propose a method of the safety boundary protection for unmanned aerial vehicles (UAVs) in the icing conditions.
Design/methodology/approach
Forty icing conditions were sampled in the continuous maximum icing conditions in the Appendix C of the Federal Aviation Regulation Part 25. Icing numerical simulations were carried out for the 40 samples and the anti-icing thermal load distribution in full evaporation mode were obtained. Based on the obtained anti-icing thermal load distribution, the surrogated model of the anti-icing thermal load distribution was established with proper orthogonal decomposition and Kriging interpolation. The weather research and forecasting (WRF) model was used for meteorological simulations to obtain the icing meteorological conditions in the target area. With the obtained icing conditions and surrogated model, the anti-icing thermal load distribution in the target area and the variation with time can be determined. According to the energy supply of the UAVs, the graded safety boundaries can be obtained.
Findings
The surrogated model can predict the effects of five factors, such as temperature, velocity, pressure, median volume diameter (MVD) and liquid water content (LWC), on the anti-icing thermal load quickly and accurately. The simulated results of the WRF mode agree well with the observed results. The method can obtain the graded safety boundaries.
Originality/value
The method has a reference significant for the safety of the UAVs with the limited energy supply in the icing conditions.
Details
Keywords
Yufeng Guo, Chuang Zhang, Lei Qi, Haixu Yu, Suzhen Liu and Liang Jin
The purpose of this study is to develop an electromagnetic loading method for online measurement of the acoustoelastic coefficients and bus bar plane stress.
Abstract
Purpose
The purpose of this study is to develop an electromagnetic loading method for online measurement of the acoustoelastic coefficients and bus bar plane stress.
Design/methodology/approach
A method based on the combination of electromagnetic loading and the acoustoelastic effect is proposed to realize online measurement of acoustoelastic coefficients and plane stress. Electromagnetic loading is performed on the bus bar specimen, and the acoustoelastic coefficients and the bus bar plane stress are obtained by the ultrasonic method. An electromagnetic loading experimental platform is designed to provide electromagnetic force to the metal plate, including an electromagnetic loading module, an ultrasonic testing module and a stress simulation module.
Findings
The feasibility of the proposed electromagnetic loading method is proved by verification experiments. The acoustoelastic coefficients and plane stress measured using the electromagnetic loading method are more accurate than those measured using the traditional method.
Originality/value
The proposed electromagnetic loading method provides a new study perspective and enables more accurate measurement of the acoustoelastic coefficients and plane stress. The study provides an important basis for evaluating the operation status of electrical equipment.