Gangting Huang, Qichen Wu, Youbiao Su, Yunfei Li and Shilin Xie
In order to improve the computation efficiency of the four-point rainflow algorithm, a new fast four-point rainflow cycle counting algorithm (FFRA) using a novel loop iteration…
Abstract
Purpose
In order to improve the computation efficiency of the four-point rainflow algorithm, a new fast four-point rainflow cycle counting algorithm (FFRA) using a novel loop iteration mode is proposed.
Design/methodology/approach
In this new algorithm, the loop iteration mode is simplified by reducing the number of iterations, tests and deletions. The high efficiency of the new algorithm makes it a preferable candidate in fatigue life online estimation of structural health monitoring systems.
Findings
The extensive simulation results show that the extracted cycles by the new FFRA are the same as those by the four-point rainflow cycle counting algorithm (FRA) and the three-point rainflow cycle counting algorithm (TRA). Especially, the simulation results indicate that the computation efficiency of the FFRA has improved an average of 12.4 times compared to the FRA and an average of 8.9 times compared to the TRA. Moreover, the equivalence of cycle extraction results between the FFRA and the FRA is proved mathematically by utilizing some fundamental properties of the rainflow algorithm. Theoretical proof of the efficiency improvement of the FFRA in comparison to the FRA is also given.
Originality/value
This merit makes the FFRA preferable in online monitoring systems of structures where fatigue life estimation needs to be accomplished online based on massive measured data. It is noticeable that the high efficiency of the FFRA attributed to the simple loop iteration, which provides beneficial guidance to improve the efficiency of existing algorithms.
Details
Keywords
Yuan Zhao, Zhennan Han, Yali Ma and Qianqian Zhang
The purpose of this paper is to establish a new dynamic coupled discrete-element contact model used for investigating fresh concrete with different grades and different motion…
Abstract
Purpose
The purpose of this paper is to establish a new dynamic coupled discrete-element contact model used for investigating fresh concrete with different grades and different motion states, and demonstrate its correctness and reliability according to the rheological property results of flow fresh concrete in different working states through simulating the slump process and mixing process.
Design/methodology/approach
To accurately express the motion and force of flowing fresh concrete in different working states from numerical analysis, a dynamic coupled discrete-element contact model is proposed for fresh concrete of varying strength. The fluid-like fresh concrete is modelled as a two-phase fluid consisting of mortar and aggregate. Depending on the contact forms of the aggregate and mortar, the model is of one of the five types, namely, Hertz–Mindlin, pendular LB contact, funicular mucous contact, capillary LB contact or slurry lift/drag contact.
Findings
To verify the accuracy of this contact model, concrete slump and cross-vane rheometer tests are simulated using the traditional LB model and dynamic coupled contact model, for five concrete strengths. Finally, by comparing the simulation results from the two different contact models with experimental data, it is found that those from the proposed contact model are closer to the experimental data.
Practical implications
This contact model could be used to address issues such as (a) the mixing, transportation and pumping of fresh concrete, (b) deeper research and discussion on the influence of fresh concrete on the dynamic performance of agitated-transport vehicles, (c) the behaviour of fresh concrete in mixing tanks and (d) the abrasion of concrete pumping pipes.
Originality/value
To accurately express the motion and force of flowing fresh concrete in different working states from numerical analysis, a dynamic coupled discrete-element contact model is proposed for fresh concrete of varying strength.