Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 21 December 2021

Saranya P., Praveen Nagarajan and A.P. Shashikala

This study aims to predict the fracture properties of geopolymer concrete, which is necessary for studying failure behaviour of concrete.

197

Abstract

Purpose

This study aims to predict the fracture properties of geopolymer concrete, which is necessary for studying failure behaviour of concrete.

Design/methodology/approach

Geopolymers are new alternative binders for cement in which polymerization gives strength to concrete rather than through hydration. Geopolymer concrete was developed from industrial byproducts such as GGBS and dolomite. Present study estimates the fracture energy of GGBS geopolymer concrete using three point bending test (RILEM TC50-FMC) with different percentages of dolomite and compare with cement concrete having same strength.

Findings

The fracture properties such as peak load, critical stress intensity factor, fracture energy and characteristic length are found to be higher for GGBS-dolomite geopolymer concrete, when their proportion becomes 70:30.

Originality/value

To the best of the authors’ knowledge, this is an original experimental work.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Access Restricted. View access options
Article
Publication date: 10 August 2021

Deepa S.N.

Limitations encountered with the models developed in the previous studies had occurrences of global minima; due to which this study developed a new intelligent ubiquitous…

350

Abstract

Purpose

Limitations encountered with the models developed in the previous studies had occurrences of global minima; due to which this study developed a new intelligent ubiquitous computational model that learns with gradient descent learning rule and operates with auto-encoders and decoders to attain better energy optimization. Ubiquitous machine learning computational model process performs training in a better way than regular supervised learning or unsupervised learning computational models with deep learning techniques, resulting in better learning and optimization for the considered problem domain of cloud-based internet-of-things (IOTs). This study aims to improve the network quality and improve the data accuracy rate during the network transmission process using the developed ubiquitous deep learning computational model.

Design/methodology/approach

In this research study, a novel intelligent ubiquitous machine learning computational model is designed and modelled to maintain the optimal energy level of cloud IOTs in sensor network domains. A new intelligent ubiquitous computational model that learns with gradient descent learning rule and operates with auto-encoders and decoders to attain better energy optimization is developed. A new unified deterministic sine-cosine algorithm has been developed in this study for parameter optimization of weight factors in the ubiquitous machine learning model.

Findings

The newly developed ubiquitous model is used for finding network energy and performing its optimization in the considered sensor network model. At the time of progressive simulation, residual energy, network overhead, end-to-end delay, network lifetime and a number of live nodes are evaluated. It is elucidated from the results attained, that the ubiquitous deep learning model resulted in better metrics based on its appropriate cluster selection and minimized route selection mechanism.

Research limitations/implications

In this research study, a novel ubiquitous computing model derived from a new optimization algorithm called a unified deterministic sine-cosine algorithm and deep learning technique was derived and applied for maintaining the optimal energy level of cloud IOTs in sensor networks. The deterministic levy flight concept is applied for developing the new optimization technique and this tends to determine the parametric weight values for the deep learning model. The ubiquitous deep learning model is designed with auto-encoders and decoders and their corresponding layers weights are determined for optimal values with the optimization algorithm. The modelled ubiquitous deep learning approach was applied in this study to determine the network energy consumption rate and thereby optimize the energy level by increasing the lifetime of the sensor network model considered. For all the considered network metrics, the ubiquitous computing model has proved to be effective and versatile than previous approaches from early research studies.

Practical implications

The developed ubiquitous computing model with deep learning techniques can be applied for any type of cloud-assisted IOTs in respect of wireless sensor networks, ad hoc networks, radio access technology networks, heterogeneous networks, etc. Practically, the developed model facilitates computing the optimal energy level of the cloud IOTs for any considered network models and this helps in maintaining a better network lifetime and reducing the end-to-end delay of the networks.

Social implications

The social implication of the proposed research study is that it helps in reducing energy consumption and increases the network lifetime of the cloud IOT based sensor network models. This approach helps the people in large to have a better transmission rate with minimized energy consumption and also reduces the delay in transmission.

Originality/value

In this research study, the network optimization of cloud-assisted IOTs of sensor network models is modelled and analysed using machine learning models as a kind of ubiquitous computing system. Ubiquitous computing models with machine learning techniques develop intelligent systems and enhances the users to make better and faster decisions. In the communication domain, the use of predictive and optimization models created with machine learning accelerates new ways to determine solutions to problems. Considering the importance of learning techniques, the ubiquitous computing model is designed based on a deep learning strategy and the learning mechanism adapts itself to attain a better network optimization model.

Details

International Journal of Pervasive Computing and Communications, vol. 18 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Access Restricted. View access options
Article
Publication date: 20 November 2023

Reddy K. Prasanth Kumar, Nageswara Rao Boggarapu and S.V.S. Narayana Murty

This paper adopts a modified Taguchi approach to develop empirical relationships to the performance characteristics (output responses) in terms of process variables and…

104

Abstract

Purpose

This paper adopts a modified Taguchi approach to develop empirical relationships to the performance characteristics (output responses) in terms of process variables and demonstrated their validity through comparison of test data. The method suggests a few tests as per the orthogonal array and provides complete information for all combinations of levels and process variables. This method also provides the estimated range of output responses so that the scatter in the repeated tests can be assessed prior to the tests.

Design/methodology/approach

In order to obtain defect-free products meeting the required specifications, researchers have conducted extensive experiments using powder bed fusion (PBF) process measuring the performance indicators (namely, relative density, surface roughness and hardness) to specify a set of printing parameters (namely, laser power, scanning speed and hatch spacing). A simple and reliable multi-objective optimization method is considered in this paper for specifying a set of optimal process parameters with SS316 L powder. It was reported that test samples printed even with optimal set of input variables revealed irregular shaped, microscopic porosities and improper melt pool formation.

Findings

Finally, based on detailed analysis, it is concluded that it is impossible to express the performance indicators, explicitly in terms of equivalent energy density (E_0ˆ*), which is a combination of multiple sets of selective laser melting (SLM) process parameters, with different performance indicators. Empirical relations for the performance indicators are developed in terms of SLM process parameters. Test data are within/close to the expected range.

Practical implications

Based on extensive analysis of the SS316 L data using modified Taguchi approach, the optimized process parameters are laser power = 298 W, scanning speed = 900 mm/s and hatch distance = 0.075 mm, for which the results of surface roughness = 2.77 Ra, relative density = 99.24%, hardness = 334 Hv and equivalent energy density is 4.062. The estimated data for the same are surface roughness is 3.733 Ra, relative density is 99.926%, hardness is 213.64 Hv and equivalent energy density is 3.677.

Originality/value

Even though equivalent energy density represents the energy input to the process, the findings of this paper conclude that energy density should no longer be considered as a dependent process parameter, as it provides multiple results for the specified energy density. This aspect has been successfully demonstrated in this paper using test data.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 3 October 2019

Dharmendra B.V., Shyam Prasad Kodali and Nageswara Rao Boggarapu

The purpose of this paper is to adopt the multi-objective optimization technique for identifying a set of optimum abrasive water jet machining (AWJM) parameters to achieve maximum…

209

Abstract

Purpose

The purpose of this paper is to adopt the multi-objective optimization technique for identifying a set of optimum abrasive water jet machining (AWJM) parameters to achieve maximum material removal rate (MRR) and minimum surface roughness.

Design/methodology/approach

Data of a few experiments as per the Taguchi’s orthogonal array are considered for achieving maximum MRR and minimum surface roughness (Ra) of the Inconel718. Analysis of variance is performed to understand the statistical significance of AWJM input process parameters.

Findings

Empirical relations are developed for MRR and Ra in terms of the AWJM process parameters and demonstrated their adequacy through comparison of test results.

Research limitations/implications

The signal-to-noise ratio transformation should be applied to take in to account the scatter in the repetition of tests in each test run. But, many researchers have adopted this transformation on a single output response of each test run, which has no added advantage other than additional computational task. This paper explains the impact of insignificant process parameter in selection of optimal process parameters. This paper demands drawbacks and complexity in existing theories prior to use new algorithms.

Practical implications

Taguchi approach is quite simple and easy to handle optimization problems, which has no practical implications (if it handles properly). There is no necessity to hunt for new algorithms for obtaining solution for multi-objective optimization AWJM process.

Originality/value

This paper deals with a case study, which demonstrates the simplicity of the Taguchi approach in solving multi-objective optimization problems with a few number of experiments.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 4 of 4
Per page
102050