Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 26 June 2023

Shilpa Bhaskar Mujumdar, Haridas Acharya, Shailaja Shirwaikar and Prafulla Bharat Bafna

This paper defines and assesses student learning patterns under the influence of problem-based learning (PBL) and their classification into a reasonable minimum number of classes…

97

Abstract

Purpose

This paper defines and assesses student learning patterns under the influence of problem-based learning (PBL) and their classification into a reasonable minimum number of classes. Study utilizes PBL implemented in an undergraduate Statistics and Operations Research course for techno-management students at a private university in India.

Design/methodology/approach

Study employs an in situ experiment using a conceptual model based on learning theory. The participant's end-of-semester GPA is Performance Indicator. Integrating PBL with classroom teaching is unique instructional approach to this study. An unsupervised and supervised data mining approach to analyse PBL impact establishes research conclusions.

Findings

The administration of PBL results in improved learning patterns (above-average) for students with medium attendance. PBL, Gender, Math background, Board and discipline are contributing factors to students' performance in the decision tree. PBL benefits a student of any gender with lower attendance.

Research limitations/implications

This study is limited to course students from one institute and does not consider external factors.

Practical implications

Researchers can apply learning patterns obtained in this paper highlighting PBL impact to study effect of every innovative pedagogical study. Classification of students based on learning behaviours can help facilitators plan remedial actions.

Originality/value

1. Clustering is used to extract student learning patterns considering dynamics of student performances over time. Then decision tree is utilized to elicit a simple process of classifying students. 2. Data mining approach overcomes limitations of statistical techniques to provide knowledge impact in presence of demographic characteristics and student attendance.

Details

Journal of Applied Research in Higher Education, vol. 16 no. 2
Type: Research Article
ISSN: 2050-7003

Keywords

Access Restricted. View access options
Article
Publication date: 19 June 2019

Prafulla Bafna, Dhanya Pramod, Shailaja Shrwaikar and Atiya Hassan

Document management is growing in importance proportionate to the growth of unstructured data, and its applications are increasing from process benchmarking to customer…

308

Abstract

Purpose

Document management is growing in importance proportionate to the growth of unstructured data, and its applications are increasing from process benchmarking to customer relationship management and so on. The purpose of this paper is to improve important components of document management that is keyword extraction and document clustering. It is achieved through knowledge extraction by updating the phrase document matrix. The objective is to manage documents by extending the phrase document matrix and achieve refined clusters. The study achieves consistency in cluster quality in spite of the increasing size of data set. Domain independence of the proposed method is tested and compared with other methods.

Design/methodology/approach

In this paper, a synset-based phrase document matrix construction method is proposed where semantically similar phrases are grouped to reduce the dimension curse. When a large collection of documents is to be processed, it includes some documents that are very much related to the topic of interest known as model documents and also the documents that deviate from the topic of interest. These non-relevant documents may affect the cluster quality. The first step in knowledge extraction from the unstructured textual data is converting it into structured form either as term frequency-inverse document frequency matrix or as phrase document matrix. Once in structured form, a range of mining algorithms from classification to clustering can be applied.

Findings

In the enhanced approach, the model documents are used to extract key phrases with synset groups, whereas the other documents participate in the construction of the feature matrix. It gives a better feature vector representation and improved cluster quality.

Research limitations/implications

Various applications that require managing of unstructured documents can use this approach by specifically incorporating the domain knowledge with a thesaurus.

Practical implications

Experiment pertaining to the academic domain is presented that categorizes research papers according to the context and topic, and this will help academicians to organize and build knowledge in a better way. The grouping and feature extraction for resume data can facilitate the candidate selection process.

Social implications

Applications like knowledge management, clustering of search engine results, different recommender systems like hotel recommender, task recommender, and so on, will benefit from this study. Hence, the study contributes to improving document management in business domains or areas of interest of its users from various strata’s of society.

Originality/value

The study proposed an improvement to document management approach that can be applied in various domains. The efficacy of the proposed approach and its enhancement is validated on three different data sets of well-articulated documents from data sets such as biography, resume and research papers. These results can be used for benchmarking further work carried out in these areas.

Details

Benchmarking: An International Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1463-5771

Keywords

Access Restricted. View access options
Article
Publication date: 12 March 2019

Prafulla Bafna, Shailaja Shirwaikar and Dhanya Pramod

Text mining is growing in importance proportionate to the growth of unstructured data and its applications are increasing day by day from knowledge management to social media…

761

Abstract

Purpose

Text mining is growing in importance proportionate to the growth of unstructured data and its applications are increasing day by day from knowledge management to social media analysis. Mapping skillset of a candidate and requirements of job profile is crucial for conducting new recruitment as well as for performing internal task allocation in the organization. The automation in the process of selecting the candidates is essential to avoid bias or subjectivity, which may occur while shuffling through thousands of resumes and other informative documents. The system takes skillset in the form of documents to build the semantic space and then takes appraisals or resumes as input and suggests the persons appropriate to complete a task or job position and employees needing additional training. The purpose of this study is to extend the term-document matrix and achieve refined clusters to produce an improved recommendation. The study also focuses on achieving consistency in cluster quality in spite of increasing size of data set, to solve scalability issues.

Design/methodology/approach

In this study, a synset-based document matrix construction method is proposed where semantically similar terms are grouped to reduce the dimension curse. An automated Task Recommendation System is proposed comprising synset-based feature extraction, iterative semantic clustering and mapping based on semantic similarity.

Findings

The first step in knowledge extraction from the unstructured textual data is converting it into structured form either as Term frequency–Inverse document frequency (TF-IDF) matrix or synset-based TF-IDF. Once in structured form, a range of mining algorithms from classification to clustering can be applied. The algorithm gives a better feature vector representation and improved cluster quality. The synset-based grouping and feature extraction for resume data optimizes the candidate selection process by reducing entropy and error and by improving precision and scalability.

Research limitations/implications

The productivity of any organization gets enhanced by assigning tasks to employees with a right set of skills. Efficient recruitment and task allocation can not only improve productivity but also cater to satisfy employee aspiration and identifying training requirements.

Practical implications

Industries can use the approach to support different processes related to human resource management such as promotions, recruitment and training and, thus, manage the talent pool.

Social implications

The task recommender system creates knowledge by following the steps of the knowledge management cycle and this methodology can be adopted in other similar knowledge management applications.

Originality/value

The efficacy of the proposed approach and its enhancement is validated by carrying out experiments on the benchmarked dataset of resumes. The results are compared with existing techniques and show refined clusters. That is Absolute error is reduced by 30 per cent, precision is increased by 20 per cent and dimensions are lowered by 60 per cent than existing technique. Also, the proposed approach solves issue of scalability by producing improved recommendation for 1,000 resumes with reduced entropy.

Details

VINE Journal of Information and Knowledge Management Systems, vol. 49 no. 2
Type: Research Article
ISSN: 2059-5891

Keywords

1 – 3 of 3
Per page
102050