Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 2 January 2018

Piotr Łapka, Marije Bakker, Piotr Furmański and Hans van Tongeren

Insight in the temperature distribution on the internal and external surface of the nacelle is of great importance during the design phase of an aircraft. However, detailed…

310

Abstract

Purpose

Insight in the temperature distribution on the internal and external surface of the nacelle is of great importance during the design phase of an aircraft. However, detailed information is not always needed. In a preliminary project stage or during parametric optimization, short analysis times are often more crucial than high accuracy. In such cases, the global insight in the temperature levels suffices to gain understanding of the relevance and influence of certain parameters. Nevertheless, estimating the maximum temperature for the most adverse conditions should also be done before a prototype is built. Therefore, this study aims to present and compare a simplified and an advanced methodology for the analysis of engine bay cooling and ventilation systems as well as heat transfer in the nacelle in a small airplane equipped with a turboprop engine in the tractor arrangement.

Design/methodology/approach

Both approaches included conductive, convective and radiative heat transfer in the engine bay of the small airplane I-23 as well as heat conduction in the nacelle made of material with anisotropic thermal conductivity. The one-dimensional (1D) model assumed that the nacelle with the air flow and engine was represented by a lumped thermal model in which heat was exchanged between the different lumped segments (the nodes) and the flowing air and engine. The three-dimensional (3D) model was based on the continuous control volume approach for heat, fluid flow and thermal radiation as well as on realizable k-ε turbulence model. Both models used commercial software.

Findings

The temperature distribution at the internal and external surface of the top nacelle was calculated. The 1D model predicted a temperature per node (per segment) while the 3D model was able to determine its values accurately and find the location of hot spots. Considering the complex geometry of the engine bay and nacelle and the assumed simplification, the obtained 1D and 3D results agreed quite well.

Practical implications

Both models will help in the development of new ventilation and cooling systems of the engine bay and nacelle as well as in the selection of materials for parts of the top cowling in the newly redesigned airplane I-23 equipped with a turboprop engine. In addition, the methodology presented in this paper might be applied in the development of other airplanes.

Originality/value

The 1D and 3D models of complex heat transfer inside the engine bay and in the nacelle of the newly re-designed airplane I-23 were elaborated and compared.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 2 May 2017

Piotr Lapka, Piotr Furmanski and Tomasz Wisniewski

The paper aims to present the advanced mathematical and numerical models of conjugated heat and mass transfer in a multi-layer protective clothing, human skin and muscle subjected…

238

Abstract

Purpose

The paper aims to present the advanced mathematical and numerical models of conjugated heat and mass transfer in a multi-layer protective clothing, human skin and muscle subjected to incident external radiative heat flux.

Design/methodology/approach

The garment was made of three layers of porous fabric separated by the air gaps, whereas in the tissue, four skin sublayers and muscle layer were distinguished. The mathematical model accounted for the coupled heat transfer by conduction and thermal radiation with the associated phase transition of the bound water in the fabric fibres and diffusion of the water vapour in the clothing layers and air gaps. The skin and muscle were modelled with two equation model which accounted for heat transfer in the tissue and arterial blood. Complex thermal and mass transfer conditions at the internal or external boundaries between the fabric layers, air gaps and skin were assumed. Special attention was paid to modelling of thermal radiation emitted by external heat source, for example, a fire, penetrating through the protective clothing and being absorbed by the skin and muscle.

Findings

Temporal and spatial variations of temperature in the protective garment, skin and muscle, as well as volume fractions of the water vapour and bound water in the clothing, were calculated for various intensity of incident radiative heat flux. The results of numerical simulation were used to estimate the risk of the first-, second- and third-degree burns.

Research limitations/implications

Because of the small thickness of the considered system in comparison to its lateral dimensions, the presented model was limited to 1D heat and moisture transfer. The convective heat transfer through the clothing was neglected.

Practical implications

The model may be applied for design of the new protective clothing and for assessment of thermal performance of the various types of protective garments. Additionally, the proposed approach may be used in the medicine for estimation of degree of thermal destruction of the tissue during treatment of burns.

Originality/value

The novel advanced thermal model of the multi-layer protective garment, skin and muscle layer was developed. For the first time, non-grey optical properties and various optical phenomena at the internal or external boundaries between the fabric layers, air gaps and skin were accounted for during simulation of thermal interactions between the external heat source (e.g. a fire), protective clothing and human skin.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 22 May 2008

Piotr Furmański and Jerzy Banaszek

This paper aims to tackle the problem of some ambiguity of the momentum equation formulation in the commonly used macroscopic models of two‐phase solid/liquid region, developing…

374

Abstract

Purpose

This paper aims to tackle the problem of some ambiguity of the momentum equation formulation in the commonly used macroscopic models of two‐phase solid/liquid region, developing during alloy solidification. These different appearances of the momentum equation are compared and the issue is addressed of how the choice of the particular form affects velocity and temperature fields.

Design/methodology/approach

Attention is focused on the ensemble averaging method, which, owing to its stochastic nature, is a new promising tool for setting up the macroscopic transport equations in highly inhomogeneous multiphase micro‐ and macro‐structures, with morphology continuously changing in time when the solidification proceeds. The basic assumptions of the two other continuum models, i.e. based on the classical mixture theory and on the volume‐averaging technique, are also unveiled. These three different forms of the momentum equation are then compared analytically and their impact on calculated velocity and temperature distribution in the mushy zone is studied for the selected test problem of binary alloy solidification driven by diffusion and thermal natural convection in a square mould.

Findings

It is found that a chosen appearance of the momentum equation mildly affects temporal velocity/temperature, and shapes of the phase interface at longer times of the solidification.

Research limitations/implications

This mainly results from small variations of the liquid fraction across the mushy zone and from a low solidification rate, and it may change drastically when anisotropic properties of the mushy zone, solutal convection, different phase densities and cooling conditions are considered. Therefore, further comprehensive study is needed.

Originality/value

The paper addresses how the different focus of the momentum equation for liquid flow is compared.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 29 April 2014

Piotr Łapka, Mirosław Seredyński, Piotr Furmański, Adam Dziubiński and Jerzy Banaszek

The purpose of this study is to developed a simplified thermo-fluid model of an engine cowling in a small airplane. An aircraft engine system is composed of different elements…

407

Abstract

Purpose

The purpose of this study is to developed a simplified thermo-fluid model of an engine cowling in a small airplane. An aircraft engine system is composed of different elements operating at various temperatures and in conjunction with the composite nacelle creates a region with high intensity of heat transfer to be covered by the cooling/ventilation systems. Therefore a thermal analysis, accounting for the complex heat transfer modes, is necessary in order to verify that an adequate cooling is ensured and that temperatures of the nacelle are maintained within the operating limits throughout the whole aircraft's flight.

Design/methodology/approach

Simplified numerical simulations of conductive, convective and radiative heat transfer in the engine bay of the small airplane I-23 in a tractor arrangement were performed for different air inlet and outlet configurations and for varying conditions existing in air inlets during the flight. The model is based on the control volume approach for heat and fluid flow as well as for thermal radiation and on k-ɛ turbulence model.

Findings

The flow and temperature distributions inside the cowling were determined, and high-temperature spots on the internal side of the nacelle and on other airplane systems located close to the turboprop engine and the exhaust system were found. The thermal radiation was found to play the key role in heat transfer inside the engine bay. The optimal configuration of air inlets and outlets was determined.

Practical implications

The obtained results will help in future studies on ventilation and cooling systems and will contribute to the selection of materials for parts of the engine bay and the nacelle as well as in developing solutions for reducing the temperature inside the cowling of the airplane I-23.

Originality/value

A complete simplified thermo-fluid model of heat transfer inside the engine bay of the airplane I-23 was developed. Additionally, influence of the thermal radiation on temperature distribution at the nacelle was investigated.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 4 of 4
Per page
102050