Search results
1 – 10 of over 1000Jian Tang and Ping Zhang
Drawing upon the motivational affordance theory, this paper aims to investigate how gamification design and human motivational needs are associated in extant literature.
Abstract
Purpose
Drawing upon the motivational affordance theory, this paper aims to investigate how gamification design and human motivational needs are associated in extant literature.
Design/methodology/approach
The authors conducted a literature analysis of 60 journal articles that studied motivational influences of gamification in information technology design. Content analysis was used to identify game design features and motivation variables studied in prior literature, and correspondence analysis was used to show the co-occurrence of game design features and basic motivational needs.
Findings
The results showed that four types of game design features and eight basic motivational needs are studied in this pool of literature. Correspondence analysis indicates some interesting associations between game design features and basic human needs.
Research limitations/implications
This research used a motivational affordance perspective to interpret the impact of game design features and suggested directions for future investigations. It is limited due to its sample size and considered as an exploratory study.
Practical implications
This research provided suggestions for technology designers that game design features vary in their motivational influence, and therefore, game design features should be used accordingly to meet users’ motivational needs.
Originality/value
This research is one of initial studies which explored the association between game design features and basic motivational needs. The findings of this study provide the groundwork for guidelines and strategies to facilitate motivational design in information technology.
Details
Keywords
Xiangou Zhang, Yuexing Wang, Xiangyu Sun, Zejia Deng, Yingdong Pu, Ping Zhang, Zhiyong Huang and Quanfeng Zhou
Au stud bump bonding technology is an effective means to realize heterogeneous integration of commercial chips in the 2.5D electronic packaging. The purpose of this paper is to…
Abstract
Purpose
Au stud bump bonding technology is an effective means to realize heterogeneous integration of commercial chips in the 2.5D electronic packaging. The purpose of this paper is to study the long-term reliability of the Au stud bump treated by four different high temperature storage times (200°C for 0, 100, 200 and 300 h).
Design/methodology/approach
The bonding strength and the fracture behavior are investigated by chip shear test. The experiment is further studied by microstructural characterization approaches such as scanning electron microscope, energy dispersive spectrometer and so on.
Findings
It is recognized that there were mainly three typical fracture models during the chip shear test among all the Au stud bump samples treated by high temperature storage. For solder bump before aging, the fracture occurred at the interface between the Cu pad and the Au stud bump. As the aging time increased, the fracture mainly occurred inside the Au stud bump at 200°C for 100 and 200 h. When aging time increased to 300 h, it is found that the fracture transferred to the interface between the Au stud bump and the Al Pad.
Originality/value
In addition, the bonding strength also changed with the high temperature storage time increasing. The bonding strength does not change linearly with the high temperature storage time increasing but decreases first and then increases. The investigation shows that the formation of the intermetallic compounds because of the reaction between the Au and Al atoms plays a key role on the bonding strength and fracture behavior variation.
Details
Keywords
Nowadays, a large amount of data related to aero engine in various types can be created in a single day and it is very important to well organize and store these data. The paper…
Abstract
Purpose
Nowadays, a large amount of data related to aero engine in various types can be created in a single day and it is very important to well organize and store these data. The paper aims to discuss this issue.
Design/methodology/approach
This paper puts forward the problem of data management with the fast development of aero engine and sets the compression system as an example to see the inner relationships of data from the initial design procedure to the final operation and maintenance part. There are five principles, namely digitization, accuracy, normative, integrality and validity, involved in managing the data effectively.
Findings
These data resources arranged according to the five principles can be well organized and better used.
Originality/value
At the end, the top design of aero engine data sharing platform is investigated and five layers including data layer, data access layer, communication layer, business logic layer and application layer are designed and presented to support the platform.
Details
Keywords
Qingyang Wang, Weifeng Wu, Ping Zhang, Chengqiang Guo and Yifan Yang
To guide the stable radius clearance choice of water-lubricated bearings for single screw compressors, this paper aims to analyze the effects of turbulence and cavitation on…
Abstract
Purpose
To guide the stable radius clearance choice of water-lubricated bearings for single screw compressors, this paper aims to analyze the effects of turbulence and cavitation on bearing performance under two conditions of specified external load and radius clearance.
Design/methodology/approach
A modified Reynolds equation considering turbulence and cavitation is adopted, based on the Jakobsson–Floberg–Olsson boundary condition, Ng–Pan model and turbulent factors. The equation is solved using the finite difference method and successive over-relaxation method to investigate the bearing performance.
Findings
The turbulent effect can increase the hydrodynamic pressure and cavitation. In addition, the turbulent effect can lead to an increase in the equilibrium radius clearance. The turbulent region exhibits a higher load capacity and cavitation rate. However, the increased cavitation negatively impacts the frictional coefficient and end flow rate. The impact of turbulence increases as the radius clearance decreases. As the rotating speed increases, the turbulence effect has a greater impact on the bearing characteristics.
Originality/value
The research can provide theoretical support for the design of water-lubricated journal bearings used in high-speed water-lubricated single screw compressors.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0029/
Details
Keywords
Xiangyu Liu, Ping Zhang, Guanglong Du, Ziping He and Guohao Chen
The purpose of this paper is to provide a novel training-responding controlling approach for human–robot interaction. The approach is inspired by the processes of muscle memory…
Abstract
Purpose
The purpose of this paper is to provide a novel training-responding controlling approach for human–robot interaction. The approach is inspired by the processes of muscle memory and conditioned reflex. The approach is significant for dealing with the problems of robot’s redundant movements and operator’s fatigue in human–robot interaction system.
Design/methodology/approach
This paper presented a directional double clustering algorithm (DDCA) to achieve the training process. The DDCA ensured that the initial clustering centers uniformly distributed in every desired cluster. A minimal resource allocation network was used to construct a memory responding algorithm (MRA). When the human–robot interaction system needed to carry out a task for more than one time, the desired movements of the robot were given by the MRA without repeated training. Experimentally demonstrated results showed the proposed training-responding controlling approach could successfully accomplish human–robot interaction tasks.
Findings
The training-responding controlling approach improved the robustness and reliability of the human–robot interaction system, which presented a novel controlling method for the operator.
Practical implications
This approach has significant commercial applications, as a means of controlling for human–robot interaction could serve to point to the desired target and arrive at the appointed positions in industrial and household environment.
Originality/value
This work presented a novel training-responding human-robot controlling method. The human-robot controlling method dealt with the problems of robot’s redundant movements and operator’s fatigue. To the authors’ knowledge, the working processes of muscle memory and conditioned reflex have not been reported to apply to human-robot controlling.
Details
Keywords
Yushan Gao, Ping Zhang and Shihui Huo
Regeneratively cooled thrust chamber is a key component of reusable liquid rocket engines. Subjected to cyclic thermal-mechanical loadings, its failure can seriously affect the…
Abstract
Purpose
Regeneratively cooled thrust chamber is a key component of reusable liquid rocket engines. Subjected to cyclic thermal-mechanical loadings, its failure can seriously affect the service life of engines. QCr0.8 copper alloy is widely used in thrust chamber walls due to its excellent thermal conductivity, and its mechanical and fatigue properties are essential for the evaluation of thrust chamber life. This paper contributes to the understanding of the damage mechanism and material selection of regeneratively cooled thrust chambers for reusable liquid rocket engines.
Design/methodology/approach
In this paper, tensile and low-cycle fatigue (LCF) tests were conducted for QCr0.8 alloy, and a Chaboche combined hardening model was established to describe the elastic-plastic behavior of QCr0.8 at different temperatures and strain levels. In addition, an LCF life prediction model was established based on the Manson–Coffin formula. The reliability and accuracy of models were then verified by simulations in ABAQUS. Finally, the service life was evaluated for a regenerative cooling thrust chamber, under the condition of cyclic startup and shutdown.
Findings
In this paper, a Chaboche combined hardening model was established to describe the elastoplastic behavior of QCr0.8 alloy at different temperatures and strain levels through LCF experiments. The parameters of the fitted Chaboche model were simulated in ABAQUS, and the simulation results were compared with the experimental results. The results show that the model has high reliability and accuracy in characterizing the viscoplastic behavior of QCr0.8 alloy.
Originality/value
(1)The parameters of a Chaboche combined hardening constitutive model and LCF life equation were optimized by tensile and strain-controlled fatigue tests of QCr0.8 copper alloy. (2) Based on the Manson–Coffin formula, the reliability and accuracy of constitutive model were then verified by simulations in ABAQUS. (3)Thermal-mechanical analysis was carried out for regeneratively cooled thrust chamber wall of a reusable liquid rocket engine, and the service life considering LCF, creep and ratcheting damage was analyzed.
Details
Keywords
Yuliang Zhou, Mingxuan Chen, Guanglong Du, Ping Zhang and Xin Liu
The aim of this paper is to propose a grasping method based on intelligent perception for implementing a grasp task with human conduct.
Abstract
Purpose
The aim of this paper is to propose a grasping method based on intelligent perception for implementing a grasp task with human conduct.
Design/methodology/approach
First, the authors leverage Kinect to collect the environment information including both image and voice. The target object is located and segmented by gesture recognition and speech analysis and finally grasped through path teaching. To obtain the posture of the human gesture accurately, the authors use the Kalman filtering (KF) algorithm to calibrate the posture use the Gaussian mixture model (GMM) for human motion modeling, and then use Gaussian mixed regression (GMR) to predict human motion posture.
Findings
In the point-cloud information, many of which are useless, the authors combined human’s gesture to remove irrelevant objects in the environment as much as possible, which can help to reduce the computation while dividing and recognizing objects; at the same time to reduce the computation, the authors used the sampling algorithm based on the voxel grid.
Originality/value
The authors used the down-sampling algorithm, kd-tree algorithm and viewpoint feature histogram algorithm to remove the impact of unrelated objects and to get a better grasp of the state.
Details
Keywords
Ping Zhang, Wenju Zhu, Md. Yousuf Hossain, Shamima Sarker, Md. Nahid Pervez, Md. Ibrahim H. Mondal, Chao Yan, Yingjie Cai and Vincenzo Naddeo
The conventional textile dyeing process requires various operational characteristics, and determining the most reliable factor in dyeing performance has always been a challenge…
Abstract
Purpose
The conventional textile dyeing process requires various operational characteristics, and determining the most reliable factor in dyeing performance has always been a challenge for the textile industry. Thus, the present paper aimed to evaluate the process sensitivity of C. I. Reactive Blue 194 dyeing of cotton fabric using a statistical technique.
Design/methodology/approach
An L27 orthogonal array-based Taguchi's methodology was used with six parameters and three levels of each parameter. The signal-to-noise (S/N) ratio and analysis of variance were studied using total fixation efficiency (T%) as the response of the process sensitivity.
Findings
Results showed that dyebath pH was the most influential factor on the process and total fixation efficiency (p-value = 0.00 and contribution percentage 45.03%), followed by dye-fixing temperature, dye mass, electrolyte concentration, dye-fixing time and material to liquor ratio.
Originality/value
Overall this study provides a foundation for the determination of dyeing process sensitivity that will be useful in textile industries toward further development.
Details
Keywords
Ping Zhang, Peigen Jin, Guanglong Du and Xin Liu
The purpose of this paper is to provide a novel methodology based on two-level protection for ensuring safety of the moving human who enters the robot’s workspace, which is…
Abstract
Purpose
The purpose of this paper is to provide a novel methodology based on two-level protection for ensuring safety of the moving human who enters the robot’s workspace, which is significant for dealing with the problem of human security in a human-robot coexisting environment.
Design/methodology/approach
In this system, anyone who enters the robot’s working space is detected by using the Kinect and their skeletons are calculated by the interval Kalman filter in real time. The first-level protection is mainly based on the prediction of the human motion, which used Gaussian mixture model and Gaussian Mixture Regression. However, even in cases where the prediction of human motion is incorrect, the system can still safeguard the human by enlarging the initial bounding volume of the human as the second-level early warning areas. Finally, an artificial potential field with some additional avoidance strategies is used to plan a path for a robot manipulator.
Findings
Experimental studies on the GOOGOL GRB3016 robot show that the robot manipulator can accomplish the predetermined tasks by circumventing the human, and the human does not feel dangerous.
Originality/value
This study presented a new framework for ensuring human security in a human-robot coexisting environment, and thus can improve the reliability of human-robot cooperation.
Details
Keywords
Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang
This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.
Abstract
Purpose
This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.
Design/methodology/approach
Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.
Findings
The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.
Originality/value
The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.
Details