Search results

1 – 10 of over 1000
Article
Publication date: 3 September 2020

Dongbo Li, Jianpei Wang, Bing Yang, Yongle Hu and Ping Yang

This paper aims to perform experimental test on fatigue characteristics of package on package (POP) stacked chip assembly under thermal cycling load. Some suggestions for design…

Abstract

Purpose

This paper aims to perform experimental test on fatigue characteristics of package on package (POP) stacked chip assembly under thermal cycling load. Some suggestions for design to prolong fatigue life of POP stacked chip assembly are provided.

Design/methodology/approach

The POP stacked chip assembly which contains different package structure mode and chip position was manufactured. The fatigue characteristics of POP stacked chip assembly under thermal cycling load were tested. The fatigue load spectrum of POP stacked chip assembly under thermal cycling load was given. The fatigue life of chips can be estimated by using the creep–fatigue life prediction model based on different stress conditions.

Findings

The solder joint stress of top package is significantly less than that of bottom solder joints, and the maximum value occurs in the middle part of the solder joints inner ring.

Originality/value

This paper fulfils useful information about the thermal reliability of POP stacked chip assembly with different structure characteristics and materials parameters.

Details

Microelectronics International, vol. 37 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

Open Access
Article
Publication date: 16 January 2024

Erose Sthapit, Chunli Ji, Yang Ping, Catherine Prentice, Brian Garrod and Huijun Yang

Drawing on the theory of memory-dominant logic, this study aims to examine how the substantive staging of the servicescape, experience co-creation, experiential satisfaction and…

3352

Abstract

Purpose

Drawing on the theory of memory-dominant logic, this study aims to examine how the substantive staging of the servicescape, experience co-creation, experiential satisfaction and experience intensification affect experience memorability and hedonic well-being in the case of unmanned smart hotels.

Design/methodology/approach

An online survey was used, with the target respondents being hotel guests people aged 18 years and older who had been recent guests of the FlyZoo Hotel in Hangzhou, China. Data were collected online from 429 guests who had stayed in the hotel between April and June 2023. Data analysis was undertaken using structural equation modelling.

Findings

The results suggest that all the proposed four constructs are positive drivers of a memorable unmanned smart hotel experience. The relationship between the memorability of the hotel experience and hedonic well-being was found to be significant and positive.

Practical implications

Unmanned smart hotels should ensure that all smart technologies function effectively and dependably and offer highly personalised services to guests, allowing them to co-create their experiences. This will lead to the guest receiving a satisfying and memorable experience. To enable experience co-creation using smart technologies, unmanned smart hotels could provide short instructional videos for guests, as well as work closely with manufacturers and suppliers to ensure that smart technology systems are regularly updated.

Originality/value

This study investigates the antecedents and outcomes of a novel phenomenon and extends the concept of memorable tourism experiences to the context of unmanned smart hotels.

Details

International Journal of Contemporary Hospitality Management, vol. 36 no. 13
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 22 November 2019

Ge Zhang, Liang Ma, Xin Zhang, Xiao Yan Ding and Yi Ping Yang

An increasing number of users join and become immersed in WeChat official accounts, but many users quit using these services as well. Nevertheless, most of the previous studies…

1063

Abstract

Purpose

An increasing number of users join and become immersed in WeChat official accounts, but many users quit using these services as well. Nevertheless, most of the previous studies mainly focussed on the usage behavior. The purpose of this paper is to fill the gap by examining factors affecting users’ unfollow intentions for WeChat subscriptions in a Chinese context.

Design/methodology/approach

Structural equation modeling is used in our study. A field survey with 260 WeChat users is conducted to test the research model and hypotheses.

Findings

The results show the following interesting key findings: first, the effect of actual cost on users’ unfollow intentions is larger than the effect of opportunity cost; second, users’ unfollow intentions will decrease with the increase of users’ perceptions of information usefulness; third, the results of the control variables showed that only landing frequency has a negative effect on users’ unfollow intentions; and fourth, users’ demographic differences are also examined in regard to how they may affect users’ unfollow intentions.

Originality/value

First, this paper studies factors influencing users’ unfollow intentions for WeChat subscriptions from a social exchange theory perspective; the authors considered both extraneous factors and users’ internal perception factors potentially affecting users’ unfollow intentions, which has rarely been researched. Furthermore, the authors examined significant differences among users’ demographic characteristics in affecting users’ unfollow intentions. The results of the study provide a more comprehensive understanding of the influencing factors of users’ unfollow intentions.

Details

Online Information Review, vol. 43 no. 7
Type: Research Article
ISSN: 1468-4527

Keywords

Article
Publication date: 14 December 2022

Ping Yang, Kefang Li and Chunli Ji

The purpose of this study is to investigate the mediating effects of customer engagement on the relationships between customer's perceived values of social media advertising (SMA…

1792

Abstract

Purpose

The purpose of this study is to investigate the mediating effects of customer engagement on the relationships between customer's perceived values of social media advertising (SMA) and customer response, as well as the moderated mediating effect of media involvement.

Design/methodology/approach

The sample was drawn from integrated resort tourists who use WeChat to browse advertisements of Macau integrated resorts. A total of 221 valid questionnaires were collected after three weeks of data collection.

Findings

Results showed that the hedonic value and utilitarian value of SMA have a significant positive impact on customer response through customer engagement with SMA respectively and media involvement moderates the mediating effect of customer engagement on SMA.

Originality/value

This study reveals the influence mechanism of social media advertising value on consumer response and pioneering attempts to highlight the moderated mediating effect of media involvement.

Details

Marketing Intelligence & Planning, vol. 41 no. 2
Type: Research Article
ISSN: 0263-4503

Keywords

Article
Publication date: 3 July 2017

Ping Yang, Yawei Wang, T. Chang, H. Ma, Zhuyong Li, Zhijian Jin and Zhiyong Hong

The purpose of this paper is to propose a hybrid driving system that couples a motor and flywheel energy storage (FES) for a megawatt-scale superconducting direct current (DC…

Abstract

Purpose

The purpose of this paper is to propose a hybrid driving system that couples a motor and flywheel energy storage (FES) for a megawatt-scale superconducting direct current (DC) induction heater. Previous studies have proven that a superconducting DC induction heater has great advantages in relation to its energy efficiency and heating quality. In this heater, a motor rotates an aluminium billet in a DC magnetic field and the induced eddy current causes it to be heated. When the aluminium billet begins to rotate, a high peak load torque appears at a low rotation speed. Therefore, driving the billet economically has been a great challenge when designing the driving system, which is the focus of this paper.

Design/methodology/approach

A hybrid driving system based on FES is designed to provide extra torque when the peak load torque occurs at a low rotation speed, which allows the successful start-up of the aluminium billet and the operation of the motor at its rated capacity. The mechanical structure of this hybrid driving system is introduced. A simulation model was constructed using Matlab/Simulink and the dynamic start-up process is analysed. The influence of the flywheel’s inertia and required minimum engagement speed are investigated.

Findings

The results of this paper show that the hybrid driving system that couples FES and a motor can successfully be used to start the aluminium billet rotating. The flywheel’s inertia and engagement speed are the most important parameters. The inertia of the flywheel decreases with an increase in its engagement speed.

Practical implications

The cost of the driving system is significantly reduced, which is very important in relation to the commercial potential of this apparatus.

Originality/value

A novel start-up strategy for driving the aluminium billet of a superconducting DC induction heater at low speed is proposed based on FES.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 May 2015

Yunqing Tang, Liqiang Zhang, Haiying Yang, Juan Guo, Ningbo Liao and Ping Yang

– The purpose of this paper is to investigate thermal properties at Cu/Al interfaces.

Abstract

Purpose

The purpose of this paper is to investigate thermal properties at Cu/Al interfaces.

Design/methodology/approach

A hybrid (molecular dynamics-interface stress element-finite element model (MD-ISE-FE) model is constructed to describe thermal behaviors at Cu/Al interfaces. The heat transfer simulation is performed after the non-ideal Cu/Al interface is constructed by diffusion bonding.

Findings

The simulation shows that the interfacial thermal resistance is decreasing with the increase of bonding temperature; while the interfacial region thickness and interfacial thermal conductivity are increasing with similar trends when the bonding temperature is increasing. It indicates that the higher bonding temperature can improve thermal properties of the interface structure.

Originality/value

The MD-ISE-FE model proposed in this paper is computationally efficient for interfacial heat transfer problems, and could be used in investigations of other interfacial behaviors of dissimilar materials. All these are helpful for the understanding of thermal properties of wire bonding interface structures. It implies that the MD-ISE-FE multiscale modeling approach would be a potential method for design and analysis of interfacial characteristics in micro/nano assembly.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 May 2012

Guangbin Tan, Ping Yang, Tianbo Li, Tao Xi, Xiaoming Yuan and Jianming Yang

The purpose of this paper is to provide a systematic method to perform analysis and test for vibration‐thermal strain behavior of plastic ball grid array (PBGA) assembly by…

Abstract

Purpose

The purpose of this paper is to provide a systematic method to perform analysis and test for vibration‐thermal strain behavior of plastic ball grid array (PBGA) assembly by considering thermal and vibration loading mode. Also to investigate the dynamic behavior of PBGA assembly by considering loading modes for design and reliability evaluation of PBGA packaging.

Design/methodology/approach

A PBGA assembly prototype with different structure and material parameters is designed and manufactured. Based on investigation of the structural and physical parameters of PBGA sample, the vibration‐thermal strain test is developed to measure the strain distribution at the surface of the BT (bismaleimide triazine) substrates and PCB (printed circuit board) surface under vibration‐thermal cycling loading such as random vibration and the temperature is changed from 0°C to 100°C.

Findings

The test results show that the loading modes have different impact on PCB, EMC and substrate, respectively. In the meantime, it is shown that the characteristics of the compound mode is not the linear accumulative result by single vibration mode and single thermal loading mode as forecasted. The nonlinear mechanism for these modes application is the future work for progress.

Research limitations/implications

It is very difficult to set up a numerical approach to illustrate the validity of the testing approach because the complex loading modes and the complex structure of PBGA assembly. The research on an accurate mathematical model of the PBGA assembly prototype is a future work.

Practical implications

It implies a potential design characteristic for future application of PBGA assembly. It also builds a basis for future work for design and reliability evaluation of BGA package.

Originality/value

This paper fulfils useful information about the thermal‐vibration coupling dynamic behavior of PBGA assembly with different structure characteristics, materials parameters.

Article
Publication date: 29 April 2014

Ping Yang, Xiusheng Tang, Yu Liu, Shuting Wang and Jianming Yang

The purpose of this paper is to perform experimental tests on fatigue characteristics of chip scale package (CSP) assembly under vibration. Some suggestions for design to prolong…

Abstract

Purpose

The purpose of this paper is to perform experimental tests on fatigue characteristics of chip scale package (CSP) assembly under vibration. Some suggestions for design to prolong fatigue life of CSP assembly are provided.

Design/methodology/approach

The CSP assembly which contains different package structure modes and chip positions was manufactured. The fatigue characteristics of CSP assembly under vibration were tested. The fatigue load spectrum of CSP assembly was developed under different excitation. The fatigue life of chips can be estimated by using the high-cycle fatigue life formula based on different stress conditions. The signal–noise curve shows the relationship between fatigue life and key factors. The design strategy for improving the fatigue life of CSP assembly was discussed.

Findings

The CSP chip has longer fatigue life than the ball grid array chip under high cyclic strain. The closer to fixed point the CSP chip, the longer fatigue life chips will have. The chip at the edge of the printed circuit board (PCB) has longer fatigue life than the one in the middle of the PCB. The greater the excitation imposed on the assembly, the shorter the fatigue life of chip.

Research limitations/implications

It is very difficult to set up a numerical approach to illustrate the validity of the testing approach because of the complex loading modes and the complex structure of CSP assembly. The research on an accurate mathematical model of the CSP assembly prototype is a future work.

Practical implications

It builds a basis for high reliability design of high-density CSP assembly for engineering application. In addition, vibration fatigue life prediction method of chip-corner solder balls is deduced based on three-band technology and cumulative damage theory under random vibration so as to verify the accuracy of experimental data.

Originality/value

This paper fulfils useful information about the dynamic reliability of CSP assembly with different structural characteristics and material parameters.

Details

Microelectronics International, vol. 31 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 10 May 2011

Ping Yang and Zixia Chen

The purpose of this paper is to develop a systematic experimental investigation for testing dynamic behavior of plastic ball grid array (PBGA) integrity in electronic packaging…

Abstract

Purpose

The purpose of this paper is to develop a systematic experimental investigation for testing dynamic behavior of plastic ball grid array (PBGA) integrity in electronic packaging and to investigate the dynamic behavior of PBGA assembly by considering fixed‐modes for design and reliability evaluation of PBGA packaging.

Design/methodology/approach

A PBGA assembly prototype with different structure and material parameters is designed and manufactured. The modal distribution under excitation cycling can be tested by hammering test. The dynamic test about the PBGA assembly prototype can be implemented with different structure characteristics, materials parameters and fixed‐modes. To illustrate the validity of experimental test, the numerical simulation for the dynamic behavior of the PBGA assembly prototype is developed by using finite element method. Comparison between the experimental results and simulation can illustrate the validity of the experimental test and finite element modeling each other.

Findings

The modal distribution test shows the influence of structure characteristics, materials parameters and fixed‐modes of PBGA assembly board. The changing trends of the dynamic modal characteristics during the dynamic excitation can be obtained with different structure characteristics, materials parameters and fixed‐modes of PBGA assembly. Test shows that the fixed location of the assembly board is the most important factor to influence the first frequency and modal deformation of the assembly board. Higher frequency and smaller deformation can be obtained when there are more constraints in printed circuit board.

Research limitations/implications

The numerical model is a compendious model by predigesting structure. The research on more accurate mathematical model of the PBGA assembly prototype is a future work.

Practical implications

It can imply the dynamics of PBGA assembly. It builds a basis for future work for design and reliability evaluation of PBGA packaging.

Originality/value

This paper provides useful information about the dynamic behavior of PBGA assembly with different structure characteristics, materials parameters and fixed‐modes.

Details

Microelectronics International, vol. 28 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 June 1996

Dai Wen Yue, Gao Yi Ping, Zang Li, Yang Dong, Tian Wan Lu and Zhang Tai Bao

Details a new type of screwing mechanical hand which has been developed. There are three distinguishing features on the structures and functions of the mechanical hand: it can…

190

Abstract

Details a new type of screwing mechanical hand which has been developed. There are three distinguishing features on the structures and functions of the mechanical hand: it can perform both screwing and unscrewing automatically; it has no special driver for its finger grasp and release but adopts some specific mechanisms and structures for this process; and the preset screwing torque is used to control the release of the fingers. Describes the main parts and operating process of the hand; the structure and movements of the wrist and hand; and the principle behind the grasp and release mechanism.

Details

Assembly Automation, vol. 16 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 1000