Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 12 September 2008

James Nutaro, Phani Teja Kuruganti, Mallikarjun Shankar, Laurie Miller and Sara Mullen

This paper aims to address a central concern in modeling and simulating electric grids and the information infrastructure that monitors and controls them. The paper discusses the…

1059

Abstract

Purpose

This paper aims to address a central concern in modeling and simulating electric grids and the information infrastructure that monitors and controls them. The paper discusses the need for and methods to construct simulation models that include important interactions between the physical and computational elements of a large power system.

Design/methodology/approach

The paper offers a particular approach to modeling and simulation of hybrid systems as an enabling technology for analysis (via simulation) of modern electric power grids. The approach, based on the discrete event system specification, integrates existing simulation tools into a unified simulation scheme. The paper demonstrates this approach with an integrated information and electric grid model of a distributed, automatic frequency maintenance activity.

Findings

Power grid modernization efforts need powerful modeling and simulation tools for hybrid systems.

Research limitations/implications

The main limitation of this approach is a lack of advanced simulation tools that support it. Existing commercial offerings are not designed to support integration with other simulation software products. The approach to integrating continuous and discrete event simulation models can overcome this problem by allowing specific tools to focus on continuous or discrete event dynamics. This will require, however, adjustments to the underlying simulation technology.

Originality/value

This paper demonstrates an approach to simulating complex hybrid systems that can, in principle, be supported by existing simulation tools. It also indicates how existing tools must be modified to support our approach.

Details

International Journal of Energy Sector Management, vol. 2 no. 3
Type: Research Article
ISSN: 1750-6220

Keywords

1 – 1 of 1
Per page
102050