Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 24 April 2018

B. Chen, Peisheng Liu and J.H. Chen

With the nickel foam made by the technique of electrodeposition on polymer foam, the purpose of this paper is to investigate the influence of several deferent processes on the…

182

Abstract

Purpose

With the nickel foam made by the technique of electrodeposition on polymer foam, the purpose of this paper is to investigate the influence of several deferent processes on the surface morphology and the specific surface area of this porous product.

Design/methodology/approach

The surface morphologies of the nickel foam were examined by SEM. The specific surface area of the porous product was measured by gas (N2) permeability method and also calculated by the reported formula.

Findings

The nickel foam from sintering in NH3 decomposition atmosphere at 850°C will achieve the same specific surface area as that at 980°C, whether this porous structure after electrodeposition comes through direct sintering in NH3 decomposition atmosphere, or through burning in air at 600°C for 4 min beforehand then the same reductive sintering.

Originality/value

There have been some studies on the preparation and application of nickel foam, but few works focus on the processing influence on the specific surface of this porous product. The present work provides the investigations on the difference of the product made under different producing conditions, and the influence of several deferent processes on the specific surface area of the product.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 20 June 2019

Shiyu Feng, Chaoyue Li, Xiaotian Peng, Lei Shao and Weihua Liu

The purpose of this study is to measure the mass diffusion coefficient of nitrogen in jet fuel using digital holography interferometry for cost-effective designing and modeling of…

139

Abstract

Purpose

The purpose of this study is to measure the mass diffusion coefficient of nitrogen in jet fuel using digital holography interferometry for cost-effective designing and modeling of the aircraft tank inerting system.

Design/methodology/approach

The mass diffusion coefficients of N2 in RP-3 and RP-5 jet fuels were measured by digital holography interferometry at temperatures ranging from 278.15 to 343.15 K. The Arrhenius equation is used to adequately describe the relationship between mass diffusion coefficients and temperature. The viscosities of RP-3 and RP-5 jet fuels were also measured to examine the accuracy of the Stokes–Einstein model in calculating mass diffusion coefficients.

Findings

As temperature increases from 278.15 to 343.15 K, the mass diffusion coefficients increase 4.23-fold for N2 in RP-3 jet fuel and 5.13-fold for N2 in RP-5 jet fuel. The value of Dµ/T is not constant as the Stokes–Einstein equation expressed, but is a weak linear function of temperature.

Practical implications

A more accurate diffusion model is proposed by fitting the measured Dµ/T with the temperature and calculating the mass diffusion coefficients of N2 in RP-3 and RP-5 jet fuels within 10 per cent relative deviation.

Originality/value

A measurement system for mass diffusion coefficients of N2 in RP-3 and RP-5 jet fuels was constructed based on the digital holography interferometry. The mass diffusion coefficient can be expressed by a uniform polynomial function of temperature and viscosity.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 2 of 2
Per page
102050