Peiman Tavakoli, Ibrahim Yitmen, Habib Sadri and Afshin Taheri
The purpose of this study is to focus on structured data provision and asset information model maintenance and develop a data provenance model on a blockchain-based digital twin…
Abstract
Purpose
The purpose of this study is to focus on structured data provision and asset information model maintenance and develop a data provenance model on a blockchain-based digital twin smart and sustainable built environment (DT) for predictive asset management (PAM) in building facilities.
Design/methodology/approach
Qualitative research data were collected through a comprehensive scoping review of secondary sources. Additionally, primary data were gathered through interviews with industry specialists. The analysis of the data served as the basis for developing blockchain-based DT data provenance models and scenarios. A case study involving a conference room in an office building in Stockholm was conducted to assess the proposed data provenance model. The implementation utilized the Remix Ethereum platform and Sepolia testnet.
Findings
Based on the analysis of results, a data provenance model on blockchain-based DT which ensures the reliability and trustworthiness of data used in PAM processes was developed. This was achieved by providing a transparent and immutable record of data origin, ownership and lineage.
Practical implications
The proposed model enables decentralized applications (DApps) to publish real-time data obtained from dynamic operations and maintenance processes, enhancing the reliability and effectiveness of data for PAM.
Originality/value
The research presents a data provenance model on a blockchain-based DT, specifically tailored to PAM in building facilities. The proposed model enhances decision-making processes related to PAM by ensuring data reliability and trustworthiness and providing valuable insights for specialists and stakeholders interested in the application of blockchain technology in asset management and data provenance.