Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 17 August 2012

Marika Immonen, Jinhua Wu, Hui Juan Yan, Peifeng Chen, Jian Xiong Xu and Tarja Rapala‐Virtanen

The purpose of this paper is to study fabrication of optical‐PCBs on panel scale boards in a conventional modern PCB process environment. It evaluates impacts on board design and…

384

Abstract

Purpose

The purpose of this paper is to study fabrication of optical‐PCBs on panel scale boards in a conventional modern PCB process environment. It evaluates impacts on board design and manufacturing with the developed optical board verifiers outlining challenges and requirements for manufacturing low‐loss waveguide structures and optical building blocks. The study aims to expand the current knowledge in the field by adding results obtained by utilizing industrial production infrastructure and developed scalable manufacturing processes to fabricate optical‐PCBs and board assemblies in high‐volumes and low‐cost manner.

Design/methodology/approach

Impacts on board design and manufacturing were studied with the developed optical technology verifiers. One verifier is optical‐PCB with embedded waveguides, integrated i/o couplers and optical vias. Another verifier is large size PCB with optical layer. A system‐level optical board assembly with 12.5 Gb/s Tx/Rx devices on surface mounted ball grid array (BGA) modules is designed for optical link analysis. Fabricated optical structures on verifiers are evaluated of their physical characteristics utilizing optical, SEM, LSCM analysis methods. Performance testing is conducted using standard optical transmission measurement methods and equipment.

Findings

The paper provides empirical results about fabrication of multimode optical waveguides with conventional PCB process equipment. Results suggest that current coating and imaging equipments are capable of producing optical waveguide patterns with high resolution and size accuracy. However, fabricators would require larger process window and defect tolerance for processing optical materials to obtain low‐loss waveguides with sufficient yields.

Research limitations/implications

Because of the limited amount of design variants in production verifiers evaluated in this paper, some impacts like effect of base material, board construction, optical layer location and beam coupling solution were not evaluated. Likewise, impacts on long‐term stability and cost were not addressed. These factors however require further investigation to address technical feasibility of optical PCBs technology prior commercial high volume production.

Practical implications

The paper includes implications for the development of a fabrication methods and testing procedures for optical polymer waveguide layers on PCBs.

Originality/value

This paper fulfils need to provide results on design, fabrication and characterization of optical PCBs and backplanes from industrial fabricator's perspective. The paper provides input for end‐user and developers to evaluate technical performance, robustness, and maturity of building blocks and supply chain to support polymer waveguide based technology for intra‐system optical links.

Access Restricted. View access options
Article
Publication date: 2 December 2021

Seyhun Durmus

Blended wing body (BWB) is a very advantageous design in terms of low fuel consumption, low emission and low noise levels. Because of these advantages, the BWB is a candidate to…

356

Abstract

Purpose

Blended wing body (BWB) is a very advantageous design in terms of low fuel consumption, low emission and low noise levels. Because of these advantages, the BWB is a candidate to become the commercial passenger aircraft of the future by providing a paradigm shift in conventional designs. This paper aims to propose a key design parameter for wing sizing of subsonic BWB and a performance parameter for calculating the lift/drag ratio values of BWBs.

Design/methodology/approach

The parameter proposed in the study is based on the square/cube law, that is, the idea that the wetted area is proportional to the power of 2/3 of the weight. Data on the weight, wing area, wingspan, lift-to-drag (L/D) ratio for 19 BWB used in the analyzes were compiled from the published literature and a theoretical methodology was developed to estimate the maximum lift to drag ratio of BWBs. The accuracy of the proposed key design parameter was questioned by comparing the estimated L/Dmax values with the actual values.

Findings

In the current study, it is claimed that the wingspan/(take-off gross weight)(1/3) parameter provides an L/D efficiency coefficient regardless of aircraft size. The proposed key design parameter is useful both for small-scale BWB, that is unmanned aerial vehicles BWB and for large-scale BWB designs. Therefore, the b/Wg(1/3) parameter offers a dimensionless L/D efficiency coefficient for BWB designs of different scales. The wetted aspect ratio explains how low aspect ratio (AR)-BWB designs can compete with high AR-tube-and-wing designs. The key parameter is also useful for getting an idea of good or bad BWB with design and performance data published in the literature. As a result, reducing the blending area and designing a smaller central body are typical features of aerodynamically efficient BWB.

Originality/value

As the role of the square/cube law in the conceptual aircraft design stage has not been sufficiently studied in the literature, the application of this law to BWBs, a new generation of designs, makes the study original. Estimation of the wetted area ratio using only wingspan and gross weight data is an alternative and practical method for assessing the aerodynamic performance of the BWB. According to the model proposed in the current study, reducing the take-off gross weight of the BWBs using lighter building materials and designing with a larger wingspan (b) are the main recommendations for an aerodynamically efficient BWB.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 26 June 2009

Yue Suo, Jingyu Li, Yuanchun Shi and Peifeng Xiang

Smart spaces are open complex computing systems, consisting of a large variety of cooperative smart things. Central to building smart spaces is the support for sophisticated…

147

Abstract

Purpose

Smart spaces are open complex computing systems, consisting of a large variety of cooperative smart things. Central to building smart spaces is the support for sophisticated coordination among diverse smart things collaborating to accomplish specified tasks. Multi‐agent systems are often used as the software infrastructures to address the coordination issue in smart spaces. However, since agents in smart spaces are dynamic, resource‐bounded and have complicated service dependencies, current approaches to coordination in multi‐agent systems encounter new challenges when applied in smart spaces. The purpose of this paper is to address these issues.

Design/methodology/approach

The paper presents Baton, a service management system to explicitly resolve the particular issues stemming from smart spaces when coordinating agents. Baton is designed as a complement to coordination approaches in multi‐agent systems with a focus on mechanisms for service discovery, composition, request arbitration and dependency maintenance. Baton is now deployed in our own smart spaces to achieve better agent coordination.

Findings

The effectiveness and efficiency of Baton is validated by its practical use in the designed scenario and some evaluation experiments.

Research limitations/implications

An attempt at performing dynamic service composition in Baton is made by using semantic information in future work.

Originality/value

Baton, a service management system to explicitly resolve the particular issues stemming from smart spaces when coordinating agents is presented.

Details

International Journal of Pervasive Computing and Communications, vol. 5 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Access Restricted. View access options
Article
Publication date: 29 March 2019

Zhang Lixia, Tang Hong and He Miao

The purpose of this paper is to predict hospital respiratory system infection rate by using the gray GM(1,1) model, and to provide theoretical basis for the prospective study on…

129

Abstract

Purpose

The purpose of this paper is to predict hospital respiratory system infection rate by using the gray GM(1,1) model, and to provide theoretical basis for the prospective study on hospital respiratory system infection management.

Design/methodology/approach

The annual respiratory system infection rate of a comprehensive third-class hospital in Yan’an is collected from 2011 to 2017. The GM(1,1) model is used for prediction, and mean absolute percentage error is used to evaluate the prediction accuracy of the model.

Findings

GM(1,1) statistical prediction model is established with good fitting degree and high reliability of extrapolation prediction.

Originality/value

The GM(1,1) model can well predict the respiratory system infection rate of the hospital.

Details

Grey Systems: Theory and Application, vol. 9 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

1 – 4 of 4
Per page
102050