Search results

1 – 2 of 2
Article
Publication date: 20 March 2017

Payam Zarafshan, Reza Larimi, S. Ali A. Moosavian and Bruno Siciliano

The purpose of this paper is to present a comparison study of cooperative object manipulation control algorithms. To this end, a full comprehensive survey of the existing control…

Abstract

Purpose

The purpose of this paper is to present a comparison study of cooperative object manipulation control algorithms. To this end, a full comprehensive survey of the existing control algorithms in this field is presented.

Design/methodology/approach

Cooperative manipulation occurs when manipulators are mechanically coupled to the object being manipulated, and the manipulators may not be treated as an isolated system. The most important and basic impedance control (IC) strategies for an assumed cooperative object manipulation task are the Augmented Object Model (AOM) control and the multiple impedance control (MIC) which are found based on the IC, where the former is designed based on the object movement, and the latter is designed based on the whole robot movement. Thus, the basis of these two algorithms are fully studied.

Findings

The results are fully analyzed, and it is practically verified that the MIC algorithm has the better performance. In fact, the results reveal that the MIC system could successfully perform the object manipulation task, as opposed to the AOM controller: for the same controller gains, the MIC strategy showed better performance than the AOM strategy. This means that because there is no control on the robot base with the AOM algorithm, the object manipulation task cannot be satisfactorily performed whenever the desired path is not within the robot work space. On the other hand, with the MIC algorithm, satisfactory object manipulation is achieved for a mobile robotic system in which the robot base, the manipulator endpoints and the manipulated object shall be moved.

Practical implications

A simple conceptual model for cooperative object manipulation is considered, and a suitable setup is designed for practical implementation of the two ICs.

Originality/value

The basis of these two aspects or these two algorithms is fully studied and compared which is the foundation of this paper. For this purpose, a case study is considered, in which a space free-flying robotic system, which contains two 2-degrees of freedom planar cooperative manipulators, is simulated to manipulate an object using the above control strategies. The system also includes a rotating antenna and camera as its third and fourth arm. Finally, a simple conceptual model for cooperative object manipulation is considered, and a suitable setup is designed for practical implementation of the two ICs.

Details

Industrial Robot: An International Journal, vol. 44 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 September 2019

Shima Shademani, Payam Zarafshan, M. Khashehchi, M.H. Kianmehr and S.M. Hashemy

This paper aims to present a solution to dredging the irrigation canals using a robotic system. Considering the importance of irrigating water, the waste within the water canals…

Abstract

Purpose

This paper aims to present a solution to dredging the irrigation canals using a robotic system. Considering the importance of irrigating water, the waste within the water canals should be avoided. Irrigation canals are artificial linear structures in the landscape that are used for transporting the water. One important problem in water transferring is the waste materials flow inside the water, and in some areas, they block the main stream, reducing the effective capacity of the canal. Among the waste materials, aquatic plants are grown on the surface of the canal that needs to be removed from the canal. This removal operation is conducted using chemical, biological, ecological and physical methods with complex supply systems. In addition, robotic systems are used as such complex systems. So, a robotic system is proposed to dredging the irrigation canals. The assumed robot was manufactured in AGRINS laboratory of Tehran University.

Design/methodology/approach

Design procedure, dynamic modelling and simulation of this robotic system are studied. To validate the system design before its construction, ADAMS software is used to perform simulations. Finally, performance evaluation of the dredger robot in the canal is studied based on the experimental data.

Findings

Results show that the design procedure has been correctly fitted to the real condition. Therefore, the designed robot could be easily used to dredging irrigation canals.

Practical implications

The assumed robot was manufactured in AGRINS laboratory of Tehran University.

Originality/value

Performing a dredging operation in the canals could be conducted by a new technique considering both free sides of the canal. Therefore, in this paper, a conceptual design of a 3-wheels stair dredger robot is numerically and experimentally studied.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 2 of 2