Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 23 July 2019

Cameron Myron Knapp, Thomas J. Lienert, Paul Burgardt, Patrick Wayne Hochanadel and Desiderio Kovar

Directed energy deposition (DED) with laser powder-feed is an additive manufacturing process that is used to produce metallic components by simultaneously providing a supply of…

264

Abstract

Purpose

Directed energy deposition (DED) with laser powder-feed is an additive manufacturing process that is used to produce metallic components by simultaneously providing a supply of energy from a laser and mass from a powder aerosol. The breadth of alloys used in DED is currently limited to a very small range as compared to wrought or cast alloys. The purpose of this paper is to develop the new alloys for DED is limited because current models to predict operational processing parameters are computationally expensive and trial-and-error based experiments are both expensive and time-consuming.

Design/methodology/approach

In this research, an agile DED model is presented to predict the geometry produced by a single layer deposit.

Findings

The utility of the model is demonstrated for type 304 L stainless steel and the significance of the predicted deposition regimes is discussed. The proposed model incorporates concepts from heat transfer, welding and laser cladding; and integrates them with experimental fits and physical models that are relevant to DED.

Originality/value

The utility of the model is demonstrated for type 304 L stainless steel and the significance of the predicted deposition regimes is discussed.

Details

Rapid Prototyping Journal, vol. 25 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 1 of 1
Per page
102050