Search results

1 – 5 of 5
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 June 2021

Paraskevi Th. Zacharia and Andreas C. Nearchou

This paper considers the assembly line worker assignment and balancing problem of type-2 (ALWABP-2) with fuzzy task times. This problem is an extension of the (simple) SALBP-2 in…

264

Abstract

Purpose

This paper considers the assembly line worker assignment and balancing problem of type-2 (ALWABP-2) with fuzzy task times. This problem is an extension of the (simple) SALBP-2 in which task times are worker-dependent and concurrently uncertain. Two criteria are simultaneously considered for minimization, namely, fuzzy cycle time and fuzzy smoothness index.

Design/methodology/approach

First, we show how fuzzy concepts can be used for managing uncertain task times. Then, we present a multiobjective genetic algorithm (MOGA) to solve the problem. MOGA is devoted to the search for Pareto-optimal solutions. For facilitating effective trade-off decision-making, two different MO approaches are implemented and tested within MOGA: a weighted-sum based approach and a Pareto-based approach.

Findings

Experiments over a set of fuzzified test problems show the effect of these approaches on the performance of MOGA while verifying its efficiency in terms of both solution and time quality.

Originality/value

To the author’s knowledge, no previous published work in the literature has studied the biobjective assembly line worker assignment and balancing problem of type-2 (ALWABP-2) with fuzzy task times.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 25 June 2024

Elias Xidias and Paraskevi Zacharia

A fleet of mobile robots has been effectively used in various application domains such as industrial plant inspection. This paper proposes a solution to the combined problem of…

50

Abstract

Purpose

A fleet of mobile robots has been effectively used in various application domains such as industrial plant inspection. This paper proposes a solution to the combined problem of task allocation and motion planning problem for a fleet of mobile robots which are requested to operate in an intelligent industry. More specifically, the robots are requested to serve a set of inspection points within given service time windows. In comparison with the conventional time windows, our problem considers fuzzy time windows to express the decision maker’s satisfaction for visiting an inspection point.

Design/methodology/approach

The paper develops a unified approach to the combined problem of task allocation and motion planning for a fleet of mobile robots with three objectives: (a) minimizing the total travel cost considering all robots and tasks, (b) balancing fairly the workloads among robots and (c) maximizing the satisfaction grade of the decision maker for receiving the services. The optimization problem is solved by using a novel combination of a Genetic Algorithm with pareto solutions and fuzzy set theory.

Findings

The computational results illustrate the efficiency and effectiveness of the proposed approach. The experimental analysis leverages the potential for using fuzzy time windows to reflect real situations and respond to demanding situations.

Originality/value

This paper provides trade-off solutions to a realistic combinatorial multi-objective optimization problem considering concurrently the motion and path planning problem for a fleet of mobile robots with fuzzy time windows.

Access Restricted. View access options
Article
Publication date: 21 August 2009

Paraskevi Zacharia, Nikos Aspragathos, Ioannis Mariolis and Evaggelos Dermatas

The purpose of this paper is to present a flexible automation system for the manipulation of fabrics lying on a work table and focuses on the design of a robot control system…

512

Abstract

Purpose

The purpose of this paper is to present a flexible automation system for the manipulation of fabrics lying on a work table and focuses on the design of a robot control system based on visual servoing and fuzzy logic for handling flexible sheets lying on a table. The main contribution of this paper is that the developed system tolerates deformations that may appear during robot handling of fabrics due to buckling without the need for fabric rigidization.

Design/methodology/approach

The vision system, consisting of two cameras, extracts the features that are necessary for handling the fabric despite possible deformations or occlusion from the robotic arm. An intelligent controller based on visual servoing is implemented enabling the robot to handle a variety of fabrics without the need for a mathematical model or complex mathematical/geometrical computations. To enhance its performance, the conventional fuzzy logic controller is tuned through genetic algorithms and an adaptation mechanism and the respective performance is evaluated. The experiments show that the proposed robotic system is flexible enough to handle various fabrics and robust in handling deformations that may change fabric's shape due to buckling.

Findings

The experiments show that the proposed robotic system is flexible enough to handle various fabrics and robust in handling deformations that may change fabric's shape due to buckling.

Research limitations/implications

It is not possible to cover all the aspects of robot handling of flexible materials in this paper, since there are still several related issues requiring solutions. Considering the future research work, the proposed approach can be extended to sew fabrics with curved edges and correcting the distortions presented during robot handling of fabrics.

Practical implications

The paper includes implications for robot handling a variety of fabrics with low and medium bending rigidity on a working table. The intent of this paper deals with buckling in context of achieving a successful seam tracking and not the correction strategy against folding or wrinkling problems.

Originality/value

This paper fulfils an identified need to study the fabrics' behavior towards robot handling on a working table.

Details

Industrial Robot: An International Journal, vol. 36 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 20 November 2007

George K. Stylios

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1620

Abstract

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Access Restricted. View access options
Article
Publication date: 1 November 2006

George K. Stylios

Examines the twelfth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

1111

Abstract

Examines the twelfth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 18 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 5 of 5
Per page
102050