Search results
1 – 1 of 1Manuela Cazzaro and Paola Maddalena Chiodini
Although the Net Promoter Score (NPS) index is simple, NPS has weaknesses that make NPS's interpretation misleading. The main criticism is that identical index values can…
Abstract
Purpose
Although the Net Promoter Score (NPS) index is simple, NPS has weaknesses that make NPS's interpretation misleading. The main criticism is that identical index values can correspond to different levels of customer loyalty. This makes difficult to determine whether the company is improving/deteriorating in two different years. The authors describe the application of statistical tools to establish whether identical values may/may not be considered similar under statistical hypotheses.
Design/methodology/approach
Equal NPSs with a “similar” component composition should have a two-way table satisfying marginal homogeneity hypothesis. The authors compare the marginals using a cumulative marginal logit model that assumes a proportional odds structure: the model has the same effect for each logit. Marginal homogeneity corresponds to null effect. If the marginal homogeneity hypothesis is rejected, the cumulative odds ratio becomes a tool for measuring the proportionality between the odds.
Findings
The authors propose an algorithm that helps managers in their decision-making process. The authors' methodology provides a statistical tool to recognize customer base compositions. The authors suggest a statistical test of the marginal distribution homogeneity of the table representing the index compositions at two times. Through the calculation of cumulative odds ratios, the authors discriminate against the hypothesis of equality of the NPS.
Originality/value
The authors' contribution provides a statistical alternative that can be easily implemented by business operators to fill the known shortcomings of the index in the customer satisfaction's context. This paper confirms that although a single number summarizes and communicates a complex situation very quickly, the number is ambiguous and unreliable if not accompanied by other tools.
Details