Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 3 May 2019

Pandia Rajan Jeyaraj and Edward Rajan Samuel Nadar

The purpose of this paper is to focus on the design and development of computer-aided fabric defect detection and classification employing advanced learning algorithm.

1326

Abstract

Purpose

The purpose of this paper is to focus on the design and development of computer-aided fabric defect detection and classification employing advanced learning algorithm.

Design/methodology/approach

To make a fast and effective classification of fabric defect, the authors have considered a characteristic of texture, namely its colour. A deep convolutional neural network is formed to learn from the training phase of various defect data sets. In the testing phase, the authors have utilised a learning feature for defect classification.

Findings

The improvement in the defect classification accuracy has been achieved by employing deep learning algorithm. The authors have tested the defect classification accuracy on six different fabric materials and have obtained an average accuracy of 96.55 per cent with 96.4 per cent sensitivity and 0.94 success rate.

Practical implications

The authors had evaluated the method by using 20 different data sets collected from different raw fabrics. Also, the authors have tested the algorithm in standard data set provided by Ministry of Textile. In the testing task, the authors have obtained an average accuracy of 94.85 per cent, with six defects being successfully recognised by the proposed algorithm.

Originality/value

The quantitative value of performance index shows the effectiveness of developed classification algorithm. Moreover, the computational time for different fabric processing was presented to verify the computational range of proposed algorithm with the conventional fabric processing techniques. Hence, this proposed computer vision-based fabric defects detection system is used for an accurate defect detection and computer-aided analysis system.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Available. Open Access. Open Access

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

1 – 2 of 2
Per page
102050