Search results
1 – 1 of 1Padmapriya Nammalwar, Ovidiu Ghita and Paul F. Whelan
The purpose of this paper is to propose a generic framework based on the colour and the texture features for colour‐textured image segmentation. The framework can be applied to…
Abstract
Purpose
The purpose of this paper is to propose a generic framework based on the colour and the texture features for colour‐textured image segmentation. The framework can be applied to any real‐world applications for appropriate interpretation.
Design/methodology/approach
The framework derives the contributions of colour and texture in image segmentation. Local binary pattern and an unsupervised k‐means clustering are used to cluster pixels in the chrominance plane. An unsupervised segmentation method is adopted. A quantitative estimation of colour and texture performance in segmentation is presented. The proposed method is tested using different mosaic and natural images and other image database used in computer vision. The framework is applied to three different applications namely, Irish script on screen images, skin cancer images and sediment profile imagery to demonstrate the robustness of the framework.
Findings
The inclusion of colour and texture as distributions of regions provided a good discrimination of the colour and the texture. The results indicate that the incorporation of colour information enhanced the texture analysis techniques and the methodology proved effective and efficient.
Originality/value
The novelty lies in the development of a generic framework using both colour and texture features for image segmentation and the different applications from various fields.
Details